
 
Academic Journal of Science and Technology, 

Aug, 2025, vol.6, No.1, p 832 - 882  
 

 

* Corresponding author: a.alrabai@wau.edu.ly 
283 

 

Deep Learning-Based Approach for Diabetic Retinopathy Detection with 

Explainable AI 
Abdelkader Alrabai1* 

 

1. Physics Department, Faculty of Education, Wadi Alshatti University, Alshatti – Libya 

  

ABSTRACT 

 Diabetic Retinopathy (DR) is one of the most common complications of diabetes and a leading cause of vision 

loss among working-age adults worldwide. Therefore, early and accurate detection is crucial to preventing vision 

impairment and blindness. Automated deep learning-based diagnostic tools can play a transformative role in large-scale 

screening programs by enabling rapid, consistent, and cost-effective diagnosis of DR. This study explored the use of 

Convolutional Neural Networks (CNNs), specifically the VGG16 model, for detecting DR from retinal images and 

evaluating its diagnostic performance on a labeled dataset. Experimental results show that VGG16 performed strongly 

across all metrics, achieving an accuracy of 98.19%, precision of 98,21%, recall of 98.17%, and an F1-score of 98.18%, 

indicating robust and reliable performance in DR detection. In addition, this study applies Explainable AI (XAI) method—

Occlusion —to improve the transparency and interpretability of deep learning models for DR detection. The findings 

highlight the importance of both accuracy and interpretability in building trust in automated diagnostics. By enabling 

early detection and supporting clinical workflows, the integration of high-performing models with XAI techniques offers 

a promising direction for reliable, AI-powered eye care solutions. 
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1. INTRODUCTION 

 Diabetic retinopathy (DR), a primary vision-

related consequence of diabetes mellitus, affects roughly 

30–40% of those with the condition. Over 100 million 

people worldwide currently live with DR, making it a 

prominent contributor to vision loss, particularly among 

adults of working age. The number of affected individuals 

is anticipated to grow markedly—from 103 million in 2020 

to 130 million by 2030, and reaching 161 million by 2045. 

This upward trend—exceeding a 25% rise within a 

decade—is linked to the growing incidence of diabetes, 

shifts in lifestyle habits, and increasing longevity. The 

expanding burden is expected to put additional pressure on 

healthcare infrastructure and result in considerable 

financial implications [1]. DR progresses through two 

main clinical stages: non-proliferative (NPDR) and 

proliferative (PDR). NPDR, the initial phase, involves 

damage to retinal blood vessels, leading to signs such as 

microaneurysms, hemorrhages, and hard exudates, often 

without noticeable symptoms. PDR is the more severe 

stage, characterized by abnormal new vessel growth 

(neovascularization) that can result in complications like 

vitreous hemorrhage and retinal detachment. In addition, 

Diabetic Macular Edema (DME), caused by fluid leakage 

due to blood-retinal barrier breakdown, can occur at any 

stage and contributes significantly to vision impairment 

[2]. NPDR itself is subdivided into mild, moderate, and 

severe forms based on the severity of retinal damage. Mild 

cases primarily show microaneurysms; moderate stages 

present additional lesions like hemorrhages, hard exudates, 

and cotton wool spots; severe NPDR is marked by 

extensive ischemia with features such as venous beading 

and intra-retinal microvascular abnormalities. Since early 

identification is key to preventing vision loss, regular 

ophthalmic evaluations are recommended to detect these 

vascular changes promptly [3]. 

 Routine retinal screening is essential for the early 

detection of DR, particularly because the condition often 

shows no symptoms during its initial phases. Early 

identification allows for timely intervention, which can 

prevent or slow vision loss. Traditionally, 

ophthalmologists depend on manual grading methods—

carefully examining retinal images by eye—to diagnose 

and assess the severity of DR. This process, while 

effective, can be time-consuming and requires significant 

expertise, underscoring the need for consistent and 

thorough screening protocols [4]. 

 Traditionally, DR screening relies on imaging the eye’s 

fundus to identify signs of disease. In recent years, the 

evaluation of these retinal images has been significantly 

enhanced through the use of machine learning techniques. 

These advanced algorithms can accurately detect subtle 

abnormalities, including microaneurysms, which represent 

the earliest detectable indicators of retinal damage. This 

integration of machine learning into screening protocols 

improves diagnostic accuracy, and additionally helps 

streamline the analysis process, enabling earlier and more 

reliable identification of DR [5]. Retinal imaging, especially 

fundus photography, plays a key role in DR detection by 

identifying signs like microaneurysms and hemorrhages. 

However, traditional methods are limited by high costs, 

reliance on experts, and difficulty in detecting depth-related 

conditions like DME [6]. Deep learning, a subset of machine 

learning, uses deep neural networks to automatically learn 

complex features from data, making it highly effective for 

DR detection in fundus images. Unlike traditional image 

analysis methods that often miss subtle patterns, Deep 

learning —especially through deep CNNs—can capture 

detailed hierarchical information directly from raw pixels. 

With end-to-end training, these models efficiently classify 

disease stages or recognize healthy retinas. Their 

performance improves with large annotated datasets, 

allowing for early DR detection and continuous model 

refinement over time [7]. Although effective, deep learning 

techniques are often criticized for their black box nature, 

providing little insight into how predictions are made or 

which features contribute to the output. This lack of 

interpretability poses a barrier to clinical adoption, as 

ophthalmologists and other end-users may struggle to trust 

systems they cannot fully understand. Ethical, safety, and 

legal concerns also arise due to the absence of transparency 

and human oversight. While achieving high classification 

accuracy is important, the ability to understand the reasoning 

behind model decisions is increasingly valued. Various 

interpretability methods are now being explored to visualize 

and explain CNN behavior in DR applications [8]. 

 Recently, deep learning models—particularly CNNs—

have shown impressive performance in various medical 

imaging tasks, including DR detection. Numerous 

investigations [9–12] have explored the application of deep 

learning techniques for identifying and categorizing DR, 

employing a variety of models and datasets. These efforts 

have generally yielded promising performance, highlighting 

the potential of such approaches in automated interpretation 

of diagnostic imagery . 

 However, the black-box nature of deep learning models 

poses a challenge in clinical settings, where transparency and 

trust are crucial. The lack of interpretability raises concerns 

about safety, accountability, and clinical acceptance. This 

study evaluates a deep learning framework based on the 

VGG16 model for binary classification of DR, incorporating 

interpretability techniques to improve transparency. 

Occlusion method are used to visually highlight regions 

influencing the model’s predictions. By combining strong 

classification performance with visual explanations, the 

study aims to support accurate and clinically meaningful AI-

assisted diagnosis, particularly in identifying key 

pathological features like microaneurysms, hemorrhages, 

and exudates. 
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2. METHODOLOGY 

 This study introduces an explainable deep 

learning approach for detecting DR, using the VGG16 

model to classify retinal fundus images into DR and No DR 

categories. To understand and interpret the model’s 

predictions, explainability technique was applied. The 

methodology involves several key stages, including the 

careful selection and preparation of the dataset, model 

training and performance evaluation, followed by the 

application of an appropriate interpretability technique to 

explain the model's predictions. 

2.1. Dataset and preprocessing:  

 The dataset used in this study comprises retinal fundus 

images aimed at detecting DR. The problem was formulated 

as a binary classification task, distinguishing between DR 

and No DR cases to prioritize early-stage detection. The 

dataset utilized is the AISOP2019 [13] collection, which 

categorizes images into five distinct classes: No DR, mild, 

moderate, severe, and proliferative DR. The distribution of 

images across these classes is as follows: 1805 images in the 

No DR class, 370 in mild, 999 in moderate, 193 in severe, 

and 295 in proliferative DR. Examples representing each 

class from the dataset are presented in Figure 1. To simplify 

the classification task into a binary prediction model, the 

dataset was reorganized into two groups: No DR and DR. 

The No DR group contains all 1805 images labeled as free 

from DR, while the DR group merges all images from the 

other four categories (mild, moderate, severe, and 

proliferative DR), resulting in a combined total of 1857 

images exhibiting varying degrees of DR. This grouping 

enables the model to focus on distinguishing between the 

presence and absence of DR, which is critical for timely 

intervention and treatment.

 

 

Figure 1. Sample dataset images

 To ensure compatibility with the input 

specifications of the model utilized, all retinal images were 

uniformly resized to 224×224 pixels. Following resizing, 

the images underwent normalization to standardize the 

pixel intensity values, which helps improve the models’ 

convergence and overall performance. The dataset was 

then divided into three subsets for effective model training 

and evaluation: 70% of the images were allocated for 

training, 15% for validation to fine-tune model parameters, 

and the remaining 15% were reserved for testing to assess 

the final model’s predictive accuracy on unseen data. 

2.2. Employed model: 

 To detect diabetic retinopathy, the pre-trained 

VGG16 model was utilized. Through transfer learning, the 

model was fine-tuned on a retinal image dataset to evaluate 

its effectiveness in early diagnosis, contributing to the 

development of automated ophthalmic screening systems . 

VGG16 [14] is a well-established CNN architecture, 

frequently applied in medical image analysis due to its 

reliable performance. Its design is straightforward, utilizing 

repeated 3×3 convolutional filters and organizing layers into 

sequential blocks, each followed by max-pooling. The 

network comprises 16 weight layers, ending with fully 

connected layers. Its popularity stems from a strong balance 

between architectural depth and computational efficiency. 

Leveraging its pre-trained weights from ImageNet, VGG16 

can be fine-tuned for specialized tasks using smaller datasets 

via transfer learning. In this study, the model was adapted for 

binary classification to detect DR by replacing its original 

classification layers with custom fully connected layers, 

enabling it to differentiate between DR and non-DR images 

effectively. 

2.3. Training and evaluation:   

 To ensure robust and consistent model training, the 

VGG16 architecture was initialized with weights pre-trained 

on the ImageNet dataset. Training was conducted using the 

Adam optimizer with a learning rate of 0.0001, a batch size 

of 32, and for 25 epochs. The performance of VGG16 was 

evaluated using widely accepted classification metrics to 

provide a comprehensive understanding of the model’s 

ability to accurately detect DR. In addition, a confusion 
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matrix was generated to offer more analysis of classification 

errors. All evaluations were performed exclusively on the 

held-out test set to ensure an unbiased assessment of the 

model’s ability to generalize to new, unseen data. This 

rigorous evaluation framework supports the validation of 

VGG16's robustness and reliability in real-world diagnostic 

scenarios. 

2.4. Explainable AI technique:   

 To improve the interpretability of the model’s predictions 

and foster greater clinical trust, explainable AI technique—

occlusion—was employed. This method helps visualize and 

highlight the regions of retinal images that most influenced 

the model’s decisions, offering valuable insights into its 

diagnostic reasoning. The Captum [15] library was used to 

implement this explainability technique in a consistent and 

efficient manner. Using Captum, occlusion sensitivity [16] 

analysis identified how masking different parts of the image 

affected the prediction, indicating which regions were most 

critical to the model’s output. By applying this method, a 

direct qualitative understanding of how the model attends to 

relevant pathological features was achieved. This 

interpretability framework not only helps validate the 

model's predictions but also supports clinicians in 

understanding, trusting, and potentially integrating AI-

driven tools into real-world diagnostic workflows. 

3. RESULTS AND DISCUSSIONS 

 The results of the model's performance evaluation are 

presented in Table 1, which summarizes the key evaluation 

metrics used to assess the model. These metrics were 

calculated based on the model's predictions on the test 

dataset and are used to quantify its effectiveness in terms of 

classification performance. The values reported offer a clear 

and concise representation of the model’s behavior and serve 

as the basis for further analysis and comparison with other 

approaches. 

Table 1. Summary of model evaluation results 

Metrics Accuracy Precision Recall F1-score 

VGG16 0.9819 0.9821 0.9817 0.9818 

  

 As shown in Table 1, the VGG16 model achieves an 

accuracy of 0.9819, precision of 0.9821, recall of 0.9817, and 

an F1-score of 0.9818. These consistently high values 

indicate the model’s strong and balanced performance in 

classifying DR images, demonstrating its reliability across 

all key evaluation metric. In addition, the confusion matrix, 

which provides a detailed breakdown of the model’s 

classification results, was calculated and is shown in Figure 

2. 

 

Figure 2. Confusion matrix 

 The confusion matrix for the VGG16 model shows its 

performance in classifying DR and No DR cases. The model 

correctly identified 277 true DR cases and 264 true No DR 

cases. There were 3 instances where the model incorrectly 

predicted No DR when it was actually DR, and 7 instances 

where it predicted DR when it was actually No DR. In total, 

the dataset used for evaluation consisted of 551 samples. 

Specifically, there were 280 true DR cases and 271 true No 

DR cases in the set. The presented confusion matrix indicates 

that the VGG16 model is performing well, demonstrating a 

strong ability to accurately distinguish between DR and No 

DR. These results collectively suggest that the model is 

reliable and effective for this specific classification task.  

 Figure 3 provides the model’s prediction on a sample from 

the test set, displaying the original image along with the true 

label, predicted class, and the model’s confidence 

probability. The model predicts the sample as class 

(predicted class) with a confidence (confidence percentage), 

which matches the true class label (true class), indicating 

accurate classification on this example.
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Figure 3. Model prediction sample

 As shown in Figure 3, the model demonstrates strong 

classification performance on individual retinal images. The 

top row highlights four samples with true labels of DR, all 

correctly predicted by the model with very high confidence 

scores ranging from 0.9972 to 1.0000. The bottom row 

shows four No DR cases, each also accurately classified with 

confidence scores between 0.9991 and 1.0000. These 

examples visually confirm the model’s high accuracy and 

confidence in distinguishing between DR and No DR, 

supporting the positive results observed in the confusion 

matrix.  

 Figure 4 presents the results occlusion method applied to a 

test set image to highlight the regions most influential for the 

model’s prediction.

 

 

Figure 4. Occlusion heatmaps on a test image 

 

 Occlusion perturbs patches of the input to measure their 

impact on the output. This attribution method provides 

complementary insights into the model’s decision-making 

process by identifying key areas in the image that contribute 

to the classification. As shown in Figure 4, the occlusion map 

analysis provides insights into the regions of the retinal 

image that the model focuses on when making predictions. 

The left panel displays the original retinal image, which 

shows signs of DR, such as exudates and microaneurysms. 

The right panel presents the occlusion map, highlighting 

areas where occlusion leads to the greatest decrease in the 

model’s confidence. Brighter, warmer colors (yellows and 

greens) correspond to regions that significantly influence the 

model’s decision. In this example, the occlusion map clearly 

emphasizes the characteristic lesions of DR, indicating that 

the model attends to clinically relevant features rather than 

irrelevant image regions. This visualization supports the 
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model’s interpretability and reliability in identifying key 

pathological signs. 

4. CONCLUSION 

This study explored the use of deep learning and explainable 

AI technique—specifically occlusion—for early detection of 

DR from retinal fundus images. The VGG16 model 

demonstrated high diagnostic accuracy and clinical 

relevance, effectively highlighting key features like 

microaneurysms and hemorrhages. By producing 

interpretable visualizations, explainable AI improved model 

transparency and clinician trust, addressing a key barrier to 

clinical adoption. The findings support VGG16's potential 

for integration into real-world DR screening, especially in 

resource-limited settings. Automated, interpretable systems 

can aid early diagnosis, reduce workload, and increase 

diagnostic consistency. The study emphasizes the 

importance of combining accurate models with 

interpretability tools for safe, trustworthy AI deployment in 

healthcare. Future work will expand to include multi-class 

grading of DR, incorporate relevant clinical metadata, and 

examine a broader range of interpretability methods. 

Additional efforts will involve testing the model on larger 

datasets, utilizing alternative architectures, and assessing 

performance in practical, real-world clinical environments.
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