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ABSTRACT

Diabetic Retinopathy (DR) is one of the most common complications of diabetes and a leading cause of vision
loss among working-age adults worldwide. Therefore, early and accurate detection is crucial to preventing vision
impairment and blindness. Automated deep learning-based diagnostic tools can play a transformative role in large-scale
screening programs by enabling rapid, consistent, and cost-effective diagnosis of DR. This study explored the use of
Convolutional Neural Networks (CNNs), specifically the VGG16 model, for detecting DR from retinal images and
evaluating its diagnostic performance on a labeled dataset. Experimental results show that VGG16 performed strongly
across all metrics, achieving an accuracy of 98.19%, precision of 98,21%, recall of 98.17%, and an F1-score of 98.18%,
indicating robust and reliable performance in DR detection. In addition, this study applies Explainable AI (XAI) method—
Occlusion —to improve the transparency and interpretability of deep learning models for DR detection. The findings
highlight the importance of both accuracy and interpretability in building trust in automated diagnostics. By enabling
early detection and supporting clinical workflows, the integration of high-performing models with XAI techniques offers
a promising direction for reliable, Al-powered eye care solutions.
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1. INTRODUCTION

Diabetic retinopathy (DR), a primary vision-
related consequence of diabetes mellitus, affects roughly
30-40% of those with the condition. Over 100 million
people worldwide currently live with DR, making it a
prominent contributor to vision loss, particularly among
adults of working age. The number of affected individuals
is anticipated to grow markedly—from 103 million in 2020
to 130 million by 2030, and reaching 161 million by 2045.
This upward trend—exceeding a 25% rise within a
decade—is linked to the growing incidence of diabetes,
shifts in lifestyle habits, and increasing longevity. The
expanding burden is expected to put additional pressure on
healthcare infrastructure and result in considerable
financial implications [1]. DR progresses through two
main clinical stages: non-proliferative (NPDR) and
proliferative (PDR). NPDR, the initial phase, involves
damage to retinal blood vessels, leading to signs such as
microaneurysms, hemorrhages, and hard exudates, often
without noticeable symptoms. PDR is the more severe
stage, characterized by abnormal new vessel growth
(neovascularization) that can result in complications like
vitreous hemorrhage and retinal detachment. In addition,
Diabetic Macular Edema (DME), caused by fluid leakage
due to blood-retinal barrier breakdown, can occur at any
stage and contributes significantly to vision impairment
[2]. NPDR itself is subdivided into mild, moderate, and
severe forms based on the severity of retinal damage. Mild
cases primarily show microaneurysms; moderate stages
present additional lesions like hemorrhages, hard exudates,
and cotton wool spots; severe NPDR is marked by
extensive ischemia with features such as venous beading
and intra-retinal microvascular abnormalities. Since early
identification is key to preventing vision loss, regular
ophthalmic evaluations are recommended to detect these
vascular changes promptly [3].

Routine retinal screening is essential for the early
detection of DR, particularly because the condition often
shows no symptoms during its initial phases. Early
identification allows for timely intervention, which can
prevent or slow vision loss.  Traditionally,
ophthalmologists depend on manual grading methods—
carefully examining retinal images by eye—to diagnose
and assess the severity of DR. This process, while
effective, can be time-consuming and requires significant
expertise, underscoring the need for consistent and
thorough screening protocols [4].

Traditionally, DR screening relies on imaging the eye’s
fundus to identify signs of disease. In recent years, the
evaluation of these retinal images has been significantly
enhanced through the use of machine learning techniques.
These advanced algorithms can accurately detect subtle
abnormalities, including microaneurysms, which represent
the earliest detectable indicators of retinal damage. This
integration of machine learning into screening protocols
improves diagnostic accuracy, and additionally helps

streamline the analysis process, enabling earlier and more
reliable identification of DR [5]. Retinal imaging, especially
fundus photography, plays a key role in DR detection by
identifying signs like microaneurysms and hemorrhages.
However, traditional methods are limited by high costs,
reliance on experts, and difficulty in detecting depth-related
conditions like DME [6]. Deep learning, a subset of machine
learning, uses deep neural networks to automatically learn
complex features from data, making it highly effective for
DR detection in fundus images. Unlike traditional image
analysis methods that often miss subtle patterns, Deep
learning —especially through deep CNNs—can capture
detailed hierarchical information directly from raw pixels.
With end-to-end training, these models efficiently classify
disease stages or recognize healthy retinas. Their
performance improves with large annotated datasets,
allowing for early DR detection and continuous model
refinement over time [7]. Although effective, deep learning
techniques are often criticized for their black box nature,
providing little insight into how predictions are made or
which features contribute to the output. This lack of
interpretability poses a barrier to clinical adoption, as
ophthalmologists and other end-users may struggle to trust
systems they cannot fully understand. Ethical, safety, and
legal concerns also arise due to the absence of transparency
and human oversight. While achieving high classification
accuracy is important, the ability to understand the reasoning
behind model decisions is increasingly valued. Various
interpretability methods are now being explored to visualize
and explain CNN behavior in DR applications [8].

Recently, deep learning models—particularly CNNs—
have shown impressive performance in various medical
imaging tasks, including DR detection. Numerous
investigations [9-12] have explored the application of deep
learning techniques for identifying and categorizing DR,
employing a variety of models and datasets. These efforts
have generally yielded promising performance, highlighting
the potential of such approaches in automated interpretation
of diagnostic imagery.

However, the black-box nature of deep learning models
poses a challenge in clinical settings, where transparency and
trust are crucial. The lack of interpretability raises concerns
about safety, accountability, and clinical acceptance. This
study evaluates a deep learning framework based on the
VGG16 model for binary classification of DR, incorporating
interpretability techniques to improve transparency.
Occlusion method are used to visually highlight regions
influencing the model’s predictions. By combining strong
classification performance with visual explanations, the
study aims to support accurate and clinically meaningful Al-
assisted diagnosis, particularly in identifying key
pathological features like microaneurysms, hemorrhages,
and exudates.
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2. METHODOLOGY

This study introduces an explainable deep
learning approach for detecting DR, using the VGG16
model to classify retinal fundus images into DR and No DR
categories. To understand and interpret the model’s
predictions, explainability technique was applied. The
methodology involves several key stages, including the
careful selection and preparation of the dataset, model
training and performance evaluation, followed by the
application of an appropriate interpretability technique to
explain the model's predictions.

2.1. Dataset and preprocessing:

The dataset used in this study comprises retinal fundus
images aimed at detecting DR. The problem was formulated
as a binary classification task, distinguishing between DR
and No DR cases to prioritize early-stage detection. The

No DR Mild

Figure 1. Sample dataset images

To ensure compatibility with the input
specifications of the model utilized, all retinal images were
uniformly resized to 224x224 pixels. Following resizing,
the images underwent normalization to standardize the
pixel intensity values, which helps improve the models’
convergence and overall performance. The dataset was
then divided into three subsets for effective model training
and evaluation: 70% of the images were allocated for
training, 15% for validation to fine-tune model parameters,
and the remaining 15% were reserved for testing to assess
the final model’s predictive accuracy on unseen data.

2.2. Employed model:

To detect diabetic retinopathy, the pre-trained
VGG16 model was utilized. Through transfer learning, the
model was fine-tuned on a retinal image dataset to evaluate
its effectiveness in early diagnosis, contributing to the
development of automated ophthalmic screening systems.

VGG16 [14] is a well-established CNN architecture,
frequently applied in medical image analysis due to its
reliable performance. Its design is straightforward, utilizing

Moderate

dataset utilized is the AISOP2019 [13] collection, which
categorizes images into five distinct classes: No DR, mild,
moderate, severe, and proliferative DR. The distribution of
images across these classes is as follows: 1805 images in the
No DR class, 370 in mild, 999 in moderate, 193 in severe,
and 295 in proliferative DR. Examples representing each
class from the dataset are presented in Figure 1. To simplify
the classification task into a binary prediction model, the
dataset was reorganized into two groups: No DR and DR.
The No DR group contains all 1805 images labeled as free
from DR, while the DR group merges all images from the
other four categories (mild, moderate, severe, and
proliferative DR), resulting in a combined total of 1857
images exhibiting varying degrees of DR. This grouping
enables the model to focus on distinguishing between the
presence and absence of DR, which is critical for timely
intervention and treatment.

Severe Proliferative DR

repeated 3%3 convolutional filters and organizing layers into
sequential blocks, each followed by max-pooling. The
network comprises 16 weight layers, ending with fully
connected layers. Its popularity stems from a strong balance
between architectural depth and computational efficiency.
Leveraging its pre-trained weights from ImageNet, VGG16
can be fine-tuned for specialized tasks using smaller datasets
via transfer learning. In this study, the model was adapted for
binary classification to detect DR by replacing its original
classification layers with custom fully connected layers,
enabling it to differentiate between DR and non-DR images
effectively.

2.3. Training and evaluation:

To ensure robust and consistent model training, the
VGG16 architecture was initialized with weights pre-trained
on the ImageNet dataset. Training was conducted using the
Adam optimizer with a learning rate of 0.0001, a batch size
of 32, and for 25 epochs. The performance of VGG16 was
evaluated using widely accepted classification metrics to
provide a comprehensive understanding of the model’s
ability to accurately detect DR. In addition, a confusion
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matrix was generated to offer more analysis of classification
errors. All evaluations were performed exclusively on the
held-out test set to ensure an unbiased assessment of the
model’s ability to generalize to new, unseen data. This
rigorous evaluation framework supports the validation of
VGG16's robustness and reliability in real-world diagnostic
scenarios.

2.4. Explainable Al technique:

To improve the interpretability of the model’s predictions
and foster greater clinical trust, explainable Al technique—
occlusion—was employed. This method helps visualize and
highlight the regions of retinal images that most influenced
the model’s decisions, offering valuable insights into its
diagnostic reasoning. The Captum [15] library was used to
implement this explainability technique in a consistent and
efficient manner. Using Captum, occlusion sensitivity [16]
analysis identified how masking different parts of the image
affected the prediction, indicating which regions were most
critical to the model’s output. By applying this method, a
direct qualitative understanding of how the model attends to
relevant pathological features was achieved. This
interpretability framework not only helps validate the
model's predictions but also supports clinicians in
understanding, trusting, and potentially integrating Al-
driven tools into real-world diagnostic workflows.

3. RESULTS AND DISCUSSIONS

The results of the model's performance evaluation are
presented in Table 1, which summarizes the key evaluation
metrics used to assess the model. These metrics were
calculated based on the model's predictions on the test
dataset and are used to quantify its effectiveness in terms of
classification performance. The values reported offer a clear
and concise representation of the model’s behavior and serve
as the basis for further analysis and comparison with other
approaches.

Table 1. Summary of model evaluation results

Metrics | Accuracy | Precision Recall F1-score

VGG16 0.9819 0.9821 0.9817 0.9818

As shown in Table 1, the VGG16 model achieves an
accuracy of 0.9819, precision 0f 0.9821, recall of 0.9817, and

an Fl-score of 0.9818. These consistently high values
indicate the model’s strong and balanced performance in
classifying DR images, demonstrating its reliability across
all key evaluation metric. In addition, the confusion matrix,
which provides a detailed breakdown of the model’s
classification results, was calculated and is shown in Figure
2.
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Figure 2. Confusion matrix

The confusion matrix for the VGG16 model shows its
performance in classifying DR and No DR cases. The model
correctly identified 277 true DR cases and 264 true No DR
cases. There were 3 instances where the model incorrectly
predicted No DR when it was actually DR, and 7 instances
where it predicted DR when it was actually No DR. In total,
the dataset used for evaluation consisted of 551 samples.
Specifically, there were 280 true DR cases and 271 true No
DR cases in the set. The presented confusion matrix indicates
that the VGG16 model is performing well, demonstrating a
strong ability to accurately distinguish between DR and No
DR. These results collectively suggest that the model is
reliable and effective for this specific classification task.

Figure 3 provides the model’s prediction on a sample from
the test set, displaying the original image along with the true
label, predicted class, and the model’s confidence
probability. The model predicts the sample as class
(predicted class) with a confidence (confidence percentage),
which matches the true class label (true class), indicating
accurate classification on this example.
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True: DR
Pred: DR
confidence: 0.9972

True: DR
Pred: DR
confidence: 1.0000

True: DR
Pred: DR
confidence: 1.0000

True: DR
Pred: DR
confidence: 1.0000

True: No DR
Pred: No DR
confidence: 1.0000

True: No DR
Pred: No DR
confidence: 0.9998

Figure 3. Model prediction sample

As shown in Figure 3, the model demonstrates strong
classification performance on individual retinal images. The
top row highlights four samples with true labels of DR, all
correctly predicted by the model with very high confidence
scores ranging from 0.9972 to 1.0000. The bottom row
shows four No DR cases, each also accurately classified with
confidence scores between 0.9991 and 1.0000. These
examples visually confirm the model’s high accuracy and

Original Image

Figure 4. Occlusion heatmaps on a test image

Occlusion perturbs patches of the input to measure their
impact on the output. This attribution method provides
complementary insights into the model’s decision-making
process by identifying key areas in the image that contribute
to the classification. As shown in Figure 4, the occlusion map
analysis provides insights into the regions of the retinal
image that the model focuses on when making predictions.
The left panel displays the original retinal image, which
shows signs of DR, such as exudates and microaneurysms.

True: No DR
Pred: No DR Pred: No DR
confidence: 0.9991 confidence: 1.0000

confidence in distinguishing between DR and No DR,
supporting the positive results observed in the confusion
matrix.

True: No DR

Figure 4 presents the results occlusion method applied to a
test set image to highlight the regions most influential for the
model’s prediction.

Occlusion
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The right panel presents the occlusion map, highlighting
areas where occlusion leads to the greatest decrease in the
model’s confidence. Brighter, warmer colors (yellows and
greens) correspond to regions that significantly influence the
model’s decision. In this example, the occlusion map clearly
emphasizes the characteristic lesions of DR, indicating that
the model attends to clinically relevant features rather than
irrelevant image regions. This visualization supports the
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model’s interpretability and reliability in identifying key 8.

pathological signs.

4. CONCLUSION

This study explored the use of deep learning and explainable 9

Al technique—specifically occlusion—for early detection of
DR from retinal fundus images. The VGG16 model
demonstrated high diagnostic accuracy and clinical
relevance, effectively highlighting key features like
microaneurysms and hemorrhages. By producing
interpretable visualizations, explainable Al improved model
transparency and clinician trust, addressing a key barrier to
clinical adoption. The findings support VGG16's potential
for integration into real-world DR screening, especially in
resource-limited settings. Automated, interpretable systems
can aid early diagnosis, reduce workload, and increase
diagnostic consistency. The study emphasizes the
importance of combining accurate models with
interpretability tools for safe, trustworthy Al deployment in
healthcare. Future work will expand to include multi-class
grading of DR, incorporate relevant clinical metadata, and
examine a broader range of interpretability methods.
Additional efforts will involve testing the model on larger
datasets, utilizing alternative architectures, and assessing
performance in practical, real-world clinical environments.
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