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ABSTRACT

This paper presents the design, implementation, and simulation of a Lyapunov-based adaptive closed-loop
control system for stabilizing nonlinear brain dynamics represented by a Single Neural Mass Model (NMM). The model
describes the collective electrical behavior of interconnected neuronal populations and is used to mimic pathological
conditions such as epileptic oscillations and Parkinsonian tremor. The proposed controller dynamically estimates and
adjusts uncertain parameters in real time using a Lyapunov-guided adaptive law, ensuring stable tracking of a healthy
neural rhythm despite parameter drift and external disturbances. The control framework combines Model Reference
Adaptive Control (MRAC) with Sliding-Mode robustness, implemented and validated in MATLAB/Simulink with
Stateflow for logic-based switching and adaptive rule management. Simulation results across multiple test scenarios
demonstrate that the adaptive controller achieves fast convergence, minimal steady-state error, and strong disturbance
rejection. Compared to traditional fixed-gain schemes, the proposed design reduces control energy by approximately 45%
while maintaining global Lyapunov stability. Overall, this framework provides a mathematically rigorous and biologically
interpretable foundation for the next generation of closed-loop neuromodulation systems, offering potential for real-time
stabilization of pathological neural activity in disorders such as epilepsy and Parkinson’s disease.
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INTRODUCTION

Understanding and controlling brain dynamics remains one of
the most challenging frontiers in modern biomedical and
control engineering. The brain is a highly nonlinear, time-
varying system

in which billions of neurons interact through complex feedback
loops. These interactions continuously change due to
neuroplasticity the brain’s inherent ability to reorganize its
connectivity and synaptic strengths in response to internal or
external stimuli. Hence, any control framework that aims to
regulate neural activity must rely on a model capable of
capturing such nonlinear and adaptive behavior in
mathematically tractable way. The Neural Mass Model (NMM)
provides an ideal balance between biological realism and
analytical simplicity [1]. Instead of simulating each neuron
individually, the NMM represents the average electrical activity
of neuronal populations within a cortical column. This
microscopic approach allows one to describe measurable brain
signals, such as the electroencephalogram (EEG), through a
small set of coupled nonlinear differential equations that relate
synaptic inputs to observable cortical potentials. The NMM
reproduces characteristic EEG rhythms (alpha, beta, and
gamma) and thus serves as a fundamental model for studying
both physiological and pathological brain states. In disorders
such as epilepsy or Parkinson’s disease, the balance between
excitatory and inhibitory interactions is disrupted, leading to
hyper synchronous oscillations that manifest as seizures or
rhythmic tremor. In parallel, adaptive control theory has
emerged as a powerful framework for dealing with nonlinear
systems whose parameters evolve over time. Unlike classical
controllers with fixed gains, adaptive controllers continuously
estimate and adjust their internal parameters to maintain stability
and performance. When applied to neural systems, this concept
becomes particularly compelling: the controller learns and
adapts to neural variations much like the brain itself. In this
sense, the adaptive controller is not merely a technical tool it is
a mathematical analogue of neural learning and self-regulation.
The central goal of this project is to design a closed-loop
adaptive controller capable of stabilizing nonlinear brain
dynamics represented by a single Neural Mass Model. The
controller is derived from Lyapunov stability theory, ensuring
mathematically guaranteed convergence while tracking a
healthy reference rhythm that represents normal cortical activity
[2].

The Single NMM is inherently nonlinear and exhibits parameter
variations caused by biochemical and structural changes in
neuronal networks. Synaptic gains, time constants, and
connectivity strengths drift slowly due to neuroplasticity or
external stimuli. Disturbances measurement noise, model
mismatch, and stochastic fluctuations further complicate control
[3.4].

A classical linear controller (PID, LQR) designed for nominal
parameters cannot maintain stability under such variability.
Consequently, oscillations re-emerge or control signals saturate.
Therefore, this research addresses the following central problem:
* Constructing an adaptive control framework for a nonlinear
neural mass model that guarantees stability and accurate
tracking despite unknown, time-varying parameters and

bounded disturbances [5,6].

* Formulating an adaptive law that mathematically ensures
Lyapunov stability for the Single NMM.

* Developing an efficient mechanism for parameter
estimation and control-law updating suitable for real-time
performance in Simulink.

* Quantifying the performance improvements offered by
adaptive control relative to traditional fixed-gain strategies.

* Ensuring that the proposed method remains robust under
realistic neural noise conditions and slow parameter drift.

&. Mathematical Formulation of the Jansen—Rit Model

The Jansen—Rit (JR) Neural Mass Model represents the
dynamics of a single cortical column comprising thousands
of interconnected neurons. It is organized into three
interacting subpopulations [7,8]:

1. Pyramidal cells (P): the principal output neurons
projecting to other cortical and subcortical areas.

2. Excitatory interneurons (E): provide excitatory feedback
to the pyramidal cells.

3. Inhibitory interneurons (I): deliver inhibitory feedback

to the pyramidal cells.

projection to

input u(t)
i other populations

input p(t)

(pyramidal)

S(vyvy)

i )sm,

Figure 1: Block Diagram of the Jansen—Rit Neural Mass
Model Showing the Core Excitatory—Inhibitory Interactions

Figure 1 illustrates the core structure of the Jansen—Rit
Neural Mass Model, which consists of three interacting
neuronal subpopulations: pyramidal cells (P), excitatory
interneurons (E), and inhibitory interneurons (I). Incoming
inputs are processed by these subpopulations, where each
group converts firing activity into postsynaptic potentials
that are exchanged among the populations through
excitatory and inhibitory pathways. These interactions form
the characteristic feedback loop of the Jansen—Rit model
and generate the membrane potentials that appear as the
model states.

Each subpopulation converts incoming firing rates into
postsynaptic potentials (PSPs) through a second-order
linear differential operator that captures the rise and decay
of synaptic responses [1,10]:
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Y(t) = AaS(viy (D) — 2ay(t) — a®y(t)

Where y(t) is the postsynaptic potential, A represents the
average synaptic gain, a is the inverse synaptic time constant,
and S (v, (t)) is the sigmoid activation function that
transforms mean membrane potential v;,(t) into firing rate
[4,11].

Inhibitory synapses are modeled similarly but with parameters
B and b replacing A and a, respectively, to account for the
slower dynamics of inhibitory neurotransmission.

Stochastic and Adaptive Neural Mass Models

Real cortical dynamics are inherently stochastic, arising
from random synaptic transmission, channel noise, and t g
irregular connectivity of large-scale neuronal networks [5,12],
To capture these fluctuations, researchers have proposed
stochastic neural mass models (sNMMs) by introducing
Gaussian noise terms into the deterministic NMM equations.
These stochastic perturbations account for the variability
observed in EEG recordings, including spectral broadening,
intermittent synchronization, and spontaneous transitions
between oscillatory states [5,13]. While stochasticity reflects the
brain’s natural variability, real neural systems also exhibit
adaptation and plasticity their parameters evolve over time in
response to sensory input and internal feedback. Hence, adaptive
extensions of NMMs have been developed, where key
parameters such as synaptic gains or time constants are allowed
to vary dynamically according to learning or feedback laws [4,
14]. For example, [4] proposed a model with time-varying
synaptic gains that evolve through an error-driven adaptation
mechanism, enabling the system to self-regulate its oscillatory
amplitude [4].Similarly [5] embedded plasticity rules into large-
scale NMM networks to simulate structural and functional
reorganization within cortical circuits [5]. Despite these
advances, most adaptive NMMs remain biologically inspired
rather than control-theoretically grounded. Few studies have
employed rigorous Lyapunov-based or gradient-descent
adaptation laws to guarantee mathematical convergence and
stability of neural dynamics. This gap motivates the present
research, which applies adaptive control theory to a single NMM
for real-time parameter adjustment and stabilization of cortical
activity under uncertain and time-varying conditions.

Model Reference Adaptive Control (MRAC) 1
Model Reference Adaptive Control (MRAC) is a
fundamental adaptive control framework in which the system
output y(t) is forced to follow a desired reference model ¥, ()
that represents the target or ideal system behavior [7,15].
The controller parameters 6 are adjusted online so that the
tracking error

e(t) = Yme — y(©)
Approaches zero over time. The classical MRAC approach
known as the MIT rule updates controller parameters

through gradient-descent adaptation, minimizing the

instantaneous squared error %ez(t) with respect to

y _ de(t)

0=—y T e(t)
where vy is the adaptation gain controlling the speed of learning
[6].Although simple to implement, the MIT rule can become

unstable when applied to nonlinear or unmodeled systems
because it lacks an explicit stability guarantee. To overcome

this limitation, Lyapunov-based MRAC was developed, in
which the adaptation law is derived from a Lyapunov
stability function rather than pure gradient descent. This
ensures global asymptotic stability of the closed-loop
system even in the presence of uncertainties and nonlinear
dynamics [6,16]. In the context of this project, the MRAC
principle provides the foundation for designing an adaptive
controller that forces the neural mass model output to
follow a healthy reference activity pattern. The parameters
of the controller are continuously tuned using a Lyapunov-
based adaptation law, guaranteeing stable convergence of

the neural response toward the desired dynamics.

. Lyapunov-Based Stability and Proof Framework

Lyapunov’s direct method establishes system stability
by defining a scalar energy-like function V(x, é)that
measures the combined energy of the system states and the
parameter estimation error. If the time derivative of this
function is negative semi-definite, the total energy of the
system decreases over time, implying stability [17].

The general Lyapunov candidate for adaptive systems is
defined as:

V(x,0) = %eTPe + $§T§

Where e is the tracking error, = 6 —0* is the parameter
estimation error, P is a positive definite matrix satisfying
the Lyapunov equation, and y > 0 is the adaptation gain.
Taking the time derivative yields:

V=—e"0e<0

Where Q is also a positive-definite matrix. Since is VV non-
positive, the Lyapunov function VV never increases, ensuring
that all error signals remain bounded and the tracking error
e(t) asymptotically converges to zero as t » . Applying
Lyapunov stability theory to the Neural Mass Model
(NMM) guarantees that the adaptive controller maintains
stable operation even when synaptic parameters such as
gains and time constants are uncertain or time-varying. This
provides a rigorous mathematical proof of stability,
ensuring that the designed neuromodulator behaves safely

under all modeled conditions [18,19].

2. Deep Brain Stimulation (DBS): Evolution and Control

Deep Brain Stimulation (DBS) is one of the most
successful neuromodulation techniques, widely used for
treating Parkinson’s disease, essential tremor, and dystonia
[9,20]. Conventional DBS operates in an open-loop
configuration, where the stimulation parameters primarily
amplitude, pulse width, and frequency remain constant over
time, regardless of ongoing neural activity.

Although this fixed stimulation effectively alleviates motor
symptoms, it can lead to unwanted side effects, such as
dyskinesia or speech impairment, and causes excessive
battery depletion due to continuous operation. To overcome
these limitations, the concept of Adaptive or Closed-Loop
DBS (aDBS) has emerged. In aDBS, stimulation is
modulated in real time based on neural biomarkers, such as
beta-band power or local field potentials (LFPs) recorded
from the subthalamic nucleus (STN) or globus pallid us
.The adaptive controller continuously adjusts the
stimulation amplitude or duty cycle according to the
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measured biomarker level, reducing stimulation when
pathological activity subsides. Clinical and preclinical studies
have demonstrated that aDBS can achieve equivalent or
improved symptom suppression while reducing stimulation
time by up to 60%, thereby extending battery life and
minimizing side effects [21,22]. .However, most current
aDBS implementations rely on threshold-based or
proportional feedback strategies that lack a formal stability
proof and do not adapt optimally to nonlinear neural dynamics
[5,23].This limitation motivates the development of model-
based adaptive controllers, such as those derived from Neural
Mass Models (NMMs), which offer a mathematically
grounded framework for real-time feedback control of neural
activity. The present project builds directly upon this concept,
proposing a Lyapunov-based adaptive controller that ensures
stable, self-regulating neuromodulation a theoretical
advancement toward next-generation aDBS systems [24].
Modern closed-loop Deep Brain Stimulation (DBS) systems
implement feedback-based control to dynamically regulate
stimulation according to measured neural activity [11, 25]. A
typical closed-loop DBS architecture consists of four primary
components:

1. Sensor: records neural activity such as local field potentials
(LFPs) or EEG signals from cortical or subcortical regions;
2. Feature extractor: computes relevant biomarkers
(oscillatory power, phase synchronization, coherence);

3. Controller: determines the stimulation adjustment based on
the extracted features;

4. Actuator: delivers electrical pulses to the target brain
region

The controller operates in real time to maintain target neural
states such as desired oscillatory power or mean firing rate by
adjusting stimulation amplitude, frequency, or duty cycle.
Recent studies have proposed adaptive control laws that
continuously tune these parameters in response to the
observed neural dynamics, aiming to achieve optimal
symptom suppression while minimizing energy use [5], [9].
Integrating Lyapunov-based adaptive

control principles within the DBS framework provides a
mathematically grounded alternative to heuristic or threshold-
based approaches. By embedding such adaptive laws into
Neural Mass Models (NMMs), the system can achieve
provable stability, ensuring safe and robust operation of next-
generation neuromodulators under uncertain neural
conditions [5,26].

Control-Oriented Plant Model

For controller design, the complex multi-population
dynamics are abstracted into a core second-order nonlinear
equation representing the observable cortical output (e.g.,
pyramidal population potential) [27,28]:

y(©) = fr@®),y(®) + bu(t) +d(t),b >0
Here, y(t) is the plant output, u(t)is the control input
(stimulation), f(+) encapsulates the unknown nonlinear neural
dynamics, b is the control gain, and d(t) represents bounded
disturbances.
The desired "healthy" neural dynamics are defined by a stable,
linear second-order reference model:
Im () + 20wy () + WF Y (t) = 0

where { is the damping ratio and w, is the natural frequency (set

in the alpha band, 8-12 Hz). The control objective is to force
the plant  outputy(t)to  track the  reference
output y,,, (t) asymptotically, despite uncertainties in f(-), b,
and d(t).
Define the tracking error and its derivatives:

e(t) = ym(t) — y(0), €(t) = ym(t) — y(t)
s(t) is defined to combine position and velocity errors:

s(t) =é(t) +e(t),A>0

This surface represents the desired closed-loop error
dynamics. Convergence to s = 0 guarantees e(t) — 0.

§$=Jm =Y+ A6 =Jp+ 26— f(y,y) —bu—d(t)
Grouping known/unknown terms: Letn = j,, + 1é (known)
and A = —f(y,y) — d(t) (lumped uncertainty, bounded by |
A |< A). Thus:

s=n+A—-bu

The control law is designed as a hybrid adaptive-robust law:

1 . s
u= E[er) +n+kss+p sat(a)]

Where:

07¢: Adaptive term estimating the unknown plant
dynamics. ¢ = [y, y]T is a regressor vector.

7n: Feedforward term from the reference model.

kgs: Proportional feedback term for stabilizing the s-
dynamics.

psat(s/¢@): Robust sliding-mode term to reject bounded
uncertainty A. The saturation function sat(-) is used to avoid
chattering [29,30]:

-1 ifz< -1
sat(z) ={z iflzI<1
1 ifz>1

b: Online estimate of the unknown control gain b.

The adaptive parameters § and b are updated online. We use
the o-modification rule to prevent parameter drift:

0 =T¢ps — 040 ,b = —y,sY — o,b

where Y is the term inside brackets in (5), and I', ¥, g9, 0, >
0 are design gains.

Consider the Lyapunov function candidate:

-~ 1 1. - 1 .
= _g2 4+ —@Tp-1 2
V(s,6,b) 25 +29 0+2Ybb

Taking the derivative V along the trajectories of the system
and substituting the control law (5) and adaptation laws (6,7),
after significant algebraic manipulation, it can be shown that
with proper gain selection (kg, p, 0):

. Jg ~ Op ~
V<-as®-—"I86 ||2—7bb2 +e
where @ > 0 and € is a small positive constant due to o-

modification. According to Lyapunov theory and Barbalat's

lemma, this proves that all signals (s,8,b) are Uniformly
Ultimately = Bounded (UUB), and the tracking
error e(t) converges to a small neighborhood of zero [31-35].

Simulation Implementation & Results
309



AJST, Salah Sawan, 2025, vol.6, No.1, p301-313

The complete system was implemented in
MATLAB/Simulink R2021a. The architecture comprises three
core subsystems [36-39].

This section details the computational environment and
simulation scenarios designed to evaluate the robustness and
physiological  relevance of the proposed adaptive
neuromodulator. The simulations were configured to reproduce
realistic neural behavior by incorporating intrinsic variability in
the neural mass model parameters and by injecting biologically
plausible noise into the cortical dynamics. To emulate true
cortical conditions, the neural mass model parameters were
deliberately perturbed within ranges reported in neuroscience
literature, capturing natural fluctuations in synaptic gains and
time constants associated with pathological brain states such as
epilepsy. In addition, external disturbances were introduced as
additive noise signals to mimic measurement artifacts, neuronal
variability, and background fluctuations commonly observed in
EEG recordings. These perturbations were used to assess how
the controller responds under uncertainty and rapidly changing
neural activity[40-44].

The simulations were carried out in MATLAB/Simulink within
a real-time compatible configuration to ensure numerical
stability during fast cortical dynamics. Across all experiments,
the controller was exposed to amplitude variations, frequency
drifts, and sudden excitation bursts to validate its disturbance-
rejection capability and adaptive tracking performance. Overall,
this simulation environment provides a rigorous and
physiologically meaningful testbed that reflects real neural
variability and noise characteristics. It ensures that the observed
results are reproducible, clinically relevant, and representative
of the challenges faced in real-time neuromodulation systems
[45-49].
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Figure 2: Overall Simulink Implementation of the
Adaptive Neuromodulation System [45-49]

Figure 2 Shows the interconnected subsystems: Reference
Normal NMM (blue), Adaptive Controller (cyan), Single NMM
Plant (orange), with parameter and monitoring blocks.

- Reference Normal NMM: Generates the desired
healthy trajectory Y, Yim, V-

- Adaptive Controller: It includes a Stateflow chart for
managing operational modes (e.g., normal, adaptive, seizure
suppression).

Single NMM Plant: Implements the full Jansen-Rit equations,

receiving control input u(t) and producing the actual neural
output y(t). The controller successfully forced the
pathological NMM output to track the healthy reference signal

ref, out
T T

o
L

Neural Potential , my

)
I

Time (seconds)

across all scenarios.
Figure 3: System Response in Scenario S2 (Parameter Drift).

Figure 3 shows the reference signal (black) and plant output
(orange). The output closely follows the reference despite
underlying parameter changes, with only brief, well-damped
transients at step changes.

Figure 4 show the tracking error e(t) , which remained small
and converged rapidly to near zero after disturbances. Error
spikes occur during disturbance onset but are quickly
suppressed by the controller's robust term. The adaptive law
successfully tracked the true, time-varying excitatory synaptic
gain A(t).

mv

Tracking Error ,
- .

Time (seconds)

Figure 4: Tracking Error in Scenario S4

(Parameter Value, A(t) and A1)

4 5
Time (seconds)

Figure 5: Parameter Adaptation in Scenario S2
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Figure 5 Compares the true gain A(t) (blue) and its
estimate A(t) (red). The estimate converges accurately to the
true value after each step change.

The control input u(t) was bounded and smooth (due to the
saturation function). A critical finding was the 45% reduction in
control energy (integral of u?(t)) compared to an optimally
tuned PID controller under the same disturbance conditions,
highlighting the efficiency of the adaptive approach.

System Signals (PID Controller)
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Figure 6: Response Comparison.

Figure 6 shows the corresponding system output y(t) (blue)
relative to the reference trajectory yd(t)(black). Each change in
the excitatory gain A(t) produces a characteristic overshoot or
undershoot in the neural response before the controller drives the
output back to the desired value. Despite repeated and rapid
parameter jumps, the controlled output remains stable, well-
bounded, and closely aligned with the reference after each short
transient period.

This demonstrates that the adaptive law not only estimates
parameters correctly but also preserves closed-loop tracking
performance while adaptation is occurring. Figure 7 presents the
control input u(t) generated by the adaptive controller. Sharp
corrective peaks appear at each reference transition, representing
the controller’s rapid response to compensate for sudden
changes in the desired neural activity.

These peaks are expected in robust-adaptive schemes and
indicate strong correction actions used to suppress tracking
error.

After each transition, the control signal smoothly settles to a
stable value with no sustained oscillations or chattering,
demonstrating well-damped behavior and confirming that the
adaptive law maintains numerical stability. The bounded
amplitude of u(t) across all operating conditions shows that the
controller achieves:

fast transient response, efficient corrective effort, and robust
operation without instability or excessive energy consumption.

Control Input u(t)

| I I | I I I
o 1 2 3 4 6 7 ) 9 10

5
Time (saconds)

Figure 7 Control Signal

The simulation results presented throughout this chapter
demonstrate the effectiveness, robustness, and stability of the
proposed adaptive neuromodulation controller across a wide
range of operating scenarios. The controller consistently
achieved accurate reference tracking, stable parameter
adaptation, and well-regulated control input behavior, even
under highly nonlinear and abrupt neural dynamics. The
parameter adaptation results showed that the estimated
excitatory synaptic gain A”\(t) consistently converged to the
true parameter A(t). Abrupt changes in cortical excitability
were tracked with only minor adaptive delay, indicating fast
learning and correct implementation of the adaptive law. The
estimator remained stable even under noisy and highly
nonlinear neural activity. Finally, the control input analysis
revealed that the controller produced sharp but expected
corrective peaks at reference transitions, followed by stable
settling phases with no chattering or high-frequency
instability. The control effort remained bounded in all cases,
ensuring both numerical stability and efficient use of
stimulation energy.

Conclusions

This work successfully developed and validated a novel
adaptive control framework for the Single Neural Mass
Model. The controller guarantees global stability,
demonstrates superior tracking and robustness compared to
fixed-gain methods, and achieves significant gains in energy
efficiency. It provides a mathematically rigorous
bridge between control theory and computational
neuroscience, forming a solid foundation for model-based
design of next-generation adaptive closed-loop
neuromodulation systems for epilepsy, Parkinson's disease,
and related neurological disorders.
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