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ABSTRACT 

This paper presents the design, implementation, and simulation of a Lyapunov-based adaptive closed-loop 

control system for stabilizing nonlinear brain dynamics represented by a Single Neural Mass Model (NMM). The model 

describes the collective electrical behavior of interconnected neuronal populations and is used to mimic pathological 

conditions such as epileptic oscillations and Parkinsonian tremor. The proposed controller dynamically estimates and 

adjusts uncertain parameters in real time using a Lyapunov-guided adaptive law, ensuring stable tracking of a healthy 

neural rhythm despite parameter drift and external disturbances. The control framework combines Model Reference 

Adaptive Control (MRAC) with Sliding-Mode robustness, implemented and validated in MATLAB/Simulink with 

Stateflow for logic-based switching and adaptive rule management. Simulation results across multiple test scenarios 

demonstrate that the adaptive controller achieves fast convergence, minimal steady-state error, and strong disturbance 

rejection. Compared to traditional fixed-gain schemes, the proposed design reduces control energy by approximately 45% 

while maintaining global Lyapunov stability. Overall, this framework provides a mathematically rigorous and biologically 

interpretable foundation for the next generation of closed-loop neuromodulation systems, offering potential for real-time 

stabilization of pathological neural activity in disorders such as epilepsy and Parkinson’s disease.  
 

KEYWORDS: Adaptive Control, Neural Mass Model (NMM), Lyapunov Stability, Sliding Mode Control (SMC), 

Nonlinear Dynamics. 
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INTRODUCTION 

Understanding and controlling brain dynamics remains one of 

the most challenging frontiers in modern biomedical and 

control engineering. The brain is a highly nonlinear, time-

varying system  

in which billions of neurons interact through complex feedback 

loops. These interactions continuously change due to 

neuroplasticity the brain’s inherent ability to reorganize its 

connectivity and synaptic strengths in response to internal or 

external stimuli. Hence, any control framework that aims to 

regulate neural activity must rely on a model capable of 

capturing such nonlinear and adaptive behavior in a 

mathematically tractable way. The Neural Mass Model (NMM) 

provides an ideal balance between biological realism and 

analytical simplicity [1]. Instead of simulating each neuron 

individually, the NMM represents the average electrical activity 

of neuronal populations within a cortical column. This 

microscopic approach allows one to describe measurable brain 

signals, such as the electroencephalogram (EEG), through a 

small set of coupled nonlinear differential equations that relate 

synaptic inputs to observable cortical potentials. The NMM 

reproduces characteristic EEG rhythms (alpha, beta, and 

gamma) and thus serves as a fundamental model for studying 

both physiological and pathological brain states. In disorders 

such as epilepsy or Parkinson’s disease, the balance between 

excitatory and inhibitory interactions is disrupted, leading to 

hyper synchronous oscillations that manifest as seizures or 

rhythmic tremor. In parallel, adaptive control theory has 

emerged as a powerful framework for dealing with nonlinear 

systems whose parameters evolve over time. Unlike classical 

controllers with fixed gains, adaptive controllers continuously 

estimate and adjust their internal parameters to maintain stability 

and performance. When applied to neural systems, this concept 

becomes particularly compelling: the controller learns and 

adapts to neural variations much like the brain itself. In this 

sense, the adaptive controller is not merely a technical tool it is 

a mathematical analogue of neural learning and self-regulation. 

The central goal of this project is to design a closed-loop 

adaptive controller capable of stabilizing nonlinear brain 

dynamics represented by a single Neural Mass Model. The 

controller is derived from Lyapunov stability theory, ensuring 

mathematically guaranteed convergence while tracking a 

healthy reference rhythm that represents normal cortical activity 

[2]. 

The Single NMM is inherently nonlinear and exhibits parameter 

variations caused by biochemical and structural changes in 

neuronal networks. Synaptic gains, time constants, and 

connectivity strengths drift slowly due to neuroplasticity or 

external stimuli. Disturbances measurement noise, model 

mismatch, and stochastic fluctuations further complicate control 

[3,4]. 

A classical linear controller (PID, LQR) designed for nominal 

parameters cannot maintain stability under such variability. 

Consequently, oscillations re-emerge or control signals saturate. 

Therefore, this research addresses the following central problem: 

• Constructing an adaptive control framework for a nonlinear 

neural mass model that guarantees stability and accurate 

tracking despite unknown, time-varying parameters and 

bounded disturbances [5,6]. 

 • Formulating an adaptive law that mathematically ensures 

Lyapunov stability for the Single NMM. 

 • Developing an efficient mechanism for parameter 

estimation and control-law updating suitable for real-time 

performance in Simulink. 

 • Quantifying the performance improvements offered by 

adaptive control relative to traditional fixed-gain strategies. 

 • Ensuring that the proposed method remains robust under 

realistic neural noise conditions and slow parameter drift. 

1. Mathematical Formulation of the Jansen–Rit Model 

       The Jansen–Rit (JR) Neural Mass Model represents the 

dynamics of a single cortical column comprising thousands 

of interconnected neurons. It is organized into three 

interacting subpopulations [7,8]: 

1. Pyramidal cells (P): the principal output neurons 

projecting to other cortical and subcortical areas. 

 2. Excitatory interneurons (E): provide excitatory feedback 

to the pyramidal cells. 

 3. Inhibitory interneurons (I): deliver inhibitory feedback 

to the pyramidal cells.  

Figure 1: Block Diagram of the Jansen–Rit Neural Mass 

Model Showing the Core Excitatory–Inhibitory Interactions 

 

Figure 1 illustrates the core structure of the Jansen–Rit 

Neural Mass Model, which consists of three interacting 

neuronal subpopulations: pyramidal cells (P), excitatory 

interneurons (E), and inhibitory interneurons (I). Incoming 

inputs are processed by these subpopulations, where each 

group converts firing activity into postsynaptic potentials 

that are exchanged among the populations through 

excitatory and inhibitory pathways. These interactions form 

the characteristic feedback loop of the Jansen–Rit model 

and generate the membrane potentials that appear as the 

model states.  

Each subpopulation converts incoming firing rates into 

postsynaptic potentials (PSPs) through a second-order 

linear differential operator that captures the rise and decay 

of synaptic responses [1,10]:                        
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 𝑦̈(𝑡) = 𝐴𝑎𝑆(𝑣𝑖𝑛(𝑡)) − 2𝑎𝑦̇(𝑡) − 𝑎2𝑦(𝑡) 

Where y(t) is the postsynaptic potential, A represents the 

average synaptic gain, a is the inverse synaptic time constant, 

and S (𝑣𝑖𝑛(𝑡)) is the sigmoid activation function that 

transforms mean membrane potential  𝑣𝑖𝑛(𝑡)  into firing rate 

[4,11]. 

Inhibitory synapses are modeled similarly but with parameters 

B and b replacing A and a, respectively, to account for the 

slower dynamics of inhibitory neurotransmission. 

Stochastic and Adaptive Neural Mass Models 

          Real cortical dynamics are inherently stochastic, arising 

from random synaptic transmission, channel noise, and the 

irregular connectivity of large-scale neuronal networks [5,12], 

To capture these fluctuations, researchers have proposed 

stochastic neural mass models (sNMMs) by introducing 

Gaussian noise terms into the deterministic NMM equations. 

These stochastic perturbations account for the variability 

observed in EEG recordings, including spectral broadening, 

intermittent synchronization, and spontaneous transitions 

between oscillatory states [5,13]. While stochasticity reflects the 

brain’s natural variability, real neural systems also exhibit 

adaptation and plasticity their parameters evolve over time in 

response to sensory input and internal feedback. Hence, adaptive 

extensions of NMMs have been developed, where key 

parameters such as synaptic gains or time constants are allowed 

to vary dynamically according to learning or feedback laws [4, 

14]. For example, [4] proposed a model with time-varying 

synaptic gains that evolve through an error-driven adaptation 

mechanism, enabling the system to self-regulate its oscillatory 

amplitude [4].Similarly [5] embedded plasticity rules into large-

scale NMM networks to simulate structural and functional 

reorganization within cortical circuits [5]. Despite these 

advances, most adaptive NMMs remain biologically inspired 

rather than control-theoretically grounded. Few studies have 

employed rigorous Lyapunov-based or gradient-descent 

adaptation laws to guarantee mathematical convergence and 

stability of neural dynamics. This gap motivates the present 

research, which applies adaptive control theory to a single NMM 

for real-time parameter adjustment and stabilization of cortical 

activity under uncertain and time-varying conditions. 

Model Reference Adaptive Control (MRAC) 

 Model Reference Adaptive Control (MRAC) is a 

fundamental adaptive control framework in which the system 

output y(t) is forced to follow a desired reference model 𝑦𝑚(𝑡) 

that represents the target or ideal system behavior [7,15]. 

The controller parameters 𝜃  are adjusted online so that the 

tracking error 

𝑒(𝑡) = 𝑦𝑚(𝑡) − 𝑦(𝑡)                              

Approaches zero over time.  The classical MRAC approach 

known as the MIT rule updates controller parameters  

 

through gradient-descent adaptation, minimizing the 

instantaneous squared error 
1

2
𝑒2(𝑡) with respect to  

𝜃̇ = −𝛾
∂𝑒(𝑡)

∂𝜃
𝑒(𝑡)                               

where γ is the adaptation gain controlling the speed of learning 

[6].Although simple to implement, the MIT rule can become 

unstable when applied to nonlinear or unmodeled systems 

because it lacks an explicit stability guarantee. To overcome 

this limitation, Lyapunov-based MRAC was developed, in 

which the adaptation law is derived from a Lyapunov 

stability function rather than pure gradient descent. This 

ensures global asymptotic stability of the closed-loop 

system even in the presence of uncertainties and nonlinear 

dynamics [6,16]. In the context of this project, the MRAC 

principle provides the foundation for designing an adaptive 

controller that forces the neural mass model output to 

follow a healthy reference activity pattern. The parameters 

of the controller are continuously tuned using a Lyapunov-

based adaptation law, guaranteeing stable convergence of 

the neural response toward the desired dynamics. 

1.1. Lyapunov-Based Stability and Proof Framework 

         Lyapunov’s direct method establishes system stability 

by defining a scalar energy-like function 𝑉(𝑥, 𝜃̃)that 

measures the combined energy of the system states and the 

parameter estimation error. If the time derivative of this 

function is negative semi-definite, the total energy of the 

system decreases over time, implying stability [17].  

The general Lyapunov candidate for adaptive systems is 

defined as: 

                  𝑉(𝑥, 𝜃̃) =
1

2
𝑒𝑇𝑃𝑒 +

1

2𝛾
𝜃̃𝑇𝜃̃             

Where 𝑒 is the tracking error, 𝜃̃ = 𝜃 −θ* is the parameter 

estimation error, P is a positive definite matrix satisfying 

the Lyapunov equation, and 𝛾 > 0 is the adaptation gain. 

Taking the time derivative yields: 

                        

Where 𝑄 is also a positive-definite matrix. Since is 𝑉̇ non-

positive, the Lyapunov function 𝑉 never increases, ensuring 

that all error signals remain bounded and the tracking error 

𝑒(𝑡) asymptotically converges to zero as t → ∞.  Applying 

Lyapunov stability theory to the Neural Mass Model 

(NMM) guarantees that the adaptive controller maintains 

stable operation even when synaptic parameters such as 

gains and time constants are uncertain or time-varying. This 

provides a rigorous mathematical proof of stability, 

ensuring that the designed neuromodulator behaves safely 

under all modeled conditions [18,19]. 

1.2. Deep Brain Stimulation (DBS): Evolution and Control 

       Deep Brain Stimulation (DBS) is one of the most 

successful neuromodulation techniques, widely used for 

treating Parkinson’s disease, essential tremor, and dystonia 

[9,20]. Conventional DBS operates in an open-loop 

configuration, where the stimulation parameters primarily 

amplitude, pulse width, and frequency remain constant over 

time, regardless of ongoing neural activity.  

Although this fixed stimulation effectively alleviates motor 

symptoms, it can lead to unwanted side effects, such as 

dyskinesia or speech impairment, and causes excessive 

battery depletion due to continuous operation. To overcome 

these limitations, the concept of Adaptive or Closed-Loop 

DBS (aDBS) has emerged. In aDBS, stimulation is 

modulated in real time based on neural biomarkers, such as 

beta-band power or local field potentials (LFPs) recorded 

from the subthalamic nucleus (STN) or globus pallid us 

.The adaptive controller continuously adjusts the 

stimulation amplitude or duty cycle according to the 
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measured biomarker level, reducing stimulation when 

pathological activity subsides. Clinical and preclinical studies 

have demonstrated that aDBS can achieve equivalent or 

improved symptom suppression while reducing stimulation 

time by up to 60%, thereby extending battery life and 

minimizing side effects [21,22]. .However, most current 

aDBS implementations rely on threshold-based or 

proportional feedback strategies that lack a formal stability 

proof and do not adapt optimally to nonlinear neural dynamics 

[5,23].This limitation motivates the development of model-

based adaptive controllers, such as those derived from Neural 

Mass Models (NMMs), which offer a mathematically 

grounded framework for real-time feedback control of neural 

activity.The present project builds directly upon this concept, 

proposing a Lyapunov-based adaptive controller that ensures 

stable, self-regulating neuromodulation a theoretical 

advancement toward next-generation aDBS systems [24]. 

Modern closed-loop Deep Brain Stimulation (DBS) systems 

implement feedback-based control to dynamically regulate 

stimulation according to measured neural activity [11, 25]. A 

typical closed-loop DBS architecture consists of four primary 

components: 

1. Sensor: records neural activity such as local field potentials 

(LFPs) or EEG signals from cortical or subcortical regions; 

 2. Feature extractor: computes relevant biomarkers 

(oscillatory power, phase synchronization, coherence); 

 3. Controller: determines the stimulation adjustment based on 

the extracted features; 

 4. Actuator: delivers electrical pulses to the target brain 

region  

The controller operates in real time to maintain target neural 

states such as desired oscillatory power or mean firing rate by 

adjusting stimulation amplitude, frequency, or duty cycle. 

Recent studies have proposed adaptive control laws that 

continuously tune these parameters in response to the 

observed neural dynamics, aiming to achieve optimal 

symptom suppression while minimizing energy use [5], [9]. 

Integrating Lyapunov-based adaptive  

control principles within the DBS framework provides a 

mathematically grounded alternative to heuristic or threshold-

based approaches. By embedding such adaptive laws into 

Neural Mass Models (NMMs), the system can achieve 

provable stability, ensuring safe and robust operation of next-

generation neuromodulators under uncertain neural 

conditions [5,26]. 

 

Control-Oriented Plant Model 

       For controller design, the complex multi-population 

dynamics are abstracted into a core second-order nonlinear 

equation representing the observable cortical output (e.g., 

pyramidal population potential) [27,28]: 

𝑦̈(𝑡) = 𝑓(𝑦(𝑡), 𝑦̇(𝑡)) + 𝑏𝑢(𝑡) + 𝑑(𝑡), 𝑏 > 0  

Here, 𝑦(𝑡) is the plant output, 𝑢(𝑡) is the control input 

(stimulation), 𝑓(⋅) encapsulates the unknown nonlinear neural 

dynamics, 𝑏 is the control gain, and 𝑑(𝑡) represents bounded 

disturbances. 

The desired "healthy" neural dynamics are defined by a stable, 

linear second-order reference model: 

𝑦̈𝑚(𝑡) + 2𝜁𝜔𝑛𝑦̇𝑚(𝑡) + 𝜔𝑛
2𝑦𝑚(𝑡) = 0  

where 𝜁 is the damping ratio and 𝜔𝑛 is the natural frequency (set 

in the alpha band, 8-12 Hz). The control objective is to force 

the plant output 𝑦(𝑡) to track the reference 

output 𝑦𝑚(𝑡) asymptotically, despite uncertainties in 𝑓(⋅), 𝑏, 

and 𝑑(𝑡). 

Define the tracking error and its derivatives: 

𝑒(𝑡) = 𝑦𝑚(𝑡) − 𝑦(𝑡), 𝑒̇(𝑡) = 𝑦̇𝑚(𝑡) − 𝑦̇(𝑡) 

𝑠(𝑡) is defined to combine position and velocity errors: 

𝑠(𝑡) = 𝑒̇(𝑡) + 𝜆𝑒(𝑡), 𝜆 > 0  

 

This surface represents the desired closed-loop error 

dynamics. Convergence to 𝑠 = 0 guarantees 𝑒(𝑡) → 0. 

𝑠̇ = 𝑦̈𝑚 − 𝑦̈ + 𝜆𝑒̇ = 𝑦̈𝑚 + 𝜆𝑒̇ − 𝑓(𝑦, 𝑦̇) − 𝑏𝑢 − 𝑑(𝑡) 

Grouping known/unknown terms: Let 𝜂 = 𝑦̈𝑚 + 𝜆𝑒̇ (known) 

and Δ = −𝑓(𝑦, 𝑦̇) − 𝑑(𝑡) (lumped uncertainty, bounded by ∣
Δ ∣≤ Δ̄). Thus: 

𝑠̇ = 𝜂 + Δ − 𝑏𝑢  

The control law is designed as a hybrid adaptive-robust law: 

𝑢 =
1

𝑏̂
[𝜃𝑇𝜙 + 𝜂 + 𝑘𝑠𝑠 + 𝜌 sat(

𝑠

𝜑
)]  

Where: 

𝜃𝑇𝜙: Adaptive term estimating the unknown plant 

dynamics. 𝜙 = [𝑦, 𝑦̇]𝑇 is a regressor vector. 

𝜂: Feedforward term from the reference model. 

𝑘𝑠𝑠: Proportional feedback term for stabilizing the 𝑠-

dynamics. 

𝜌 sat(𝑠/𝜑): Robust sliding-mode term to reject bounded 

uncertainty Δ. The saturation function sat(⋅) is used to avoid 

chattering [29,30]: 

sat(𝑧) = {
−1 if 𝑧 < −1
𝑧 if ∣ 𝑧 ∣≤ 1
1 if 𝑧 > 1

 

 

𝑏̂: Online estimate of the unknown control gain 𝑏. 

The adaptive parameters 𝜃 and 𝑏̂ are updated online. We use 

the σ-modification rule to prevent parameter drift:                

                𝜃̇ = Γ𝜙𝑠 − 𝜎𝜃𝜃 , 𝑏̇̂ = −𝛾𝑏𝑠Υ − 𝜎𝑏𝑏̂ 

 

where Υ is the term inside brackets in (5), and Γ, 𝛾𝑏 , 𝜎𝜃, 𝜎𝑏 >
0 are design gains. 

Consider the Lyapunov function candidate: 

𝑉(𝑠, 𝜃̃, 𝑏̃) =
1

2
𝑠2 +

1

2
𝜃̃𝑇Γ−1𝜃̃ +

1

2𝛾𝑏
𝑏̃2  

Taking the derivative 𝑉̇ along the trajectories of the system 

and substituting the control law (5) and adaptation laws (6,7), 

after significant algebraic manipulation, it can be shown that 

with proper gain selection (𝑘𝑠 , 𝜌, 𝜎): 

𝑉̇ ≤ −𝛼𝑠2 −
𝜎𝜃

2
∥ 𝜃̃ ∥2−

𝜎𝑏

2
𝑏̃2 + 𝜖  

where 𝛼 > 0 and 𝜖 is a small positive constant due to σ-

modification. According to Lyapunov theory and Barbalat's 

lemma, this proves that all signals (𝑠, 𝜃̃, 𝑏̃) are Uniformly 

Ultimately Bounded (UUB), and the tracking 

error 𝑒(𝑡) converges to a small neighborhood of zero [31-35]. 

 

Simulation Implementation & Results 
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         The complete system was implemented in 

MATLAB/Simulink R2021a. The architecture comprises three 

core subsystems [36-39].  

This section details the computational environment and 

simulation scenarios designed to evaluate the robustness and 

physiological relevance of the proposed adaptive 

neuromodulator. The simulations were configured to reproduce 

realistic neural behavior by incorporating intrinsic variability in 

the neural mass model parameters and by injecting biologically 

plausible noise into the cortical dynamics. To emulate true 

cortical conditions, the neural mass model parameters were 

deliberately perturbed within ranges reported in neuroscience 

literature, capturing natural fluctuations in synaptic gains and 

time constants associated with pathological brain states such as 

epilepsy. In addition, external disturbances were introduced as 

additive noise signals to mimic measurement artifacts, neuronal 

variability, and background fluctuations commonly observed in 

EEG recordings. These perturbations were used to assess how 

the controller responds under uncertainty and rapidly changing 

neural activity[40-44]. 

The simulations were carried out in MATLAB/Simulink within 

a real-time compatible configuration to ensure numerical 

stability during fast cortical dynamics. Across all experiments, 

the controller was exposed to amplitude variations, frequency 

drifts, and sudden excitation bursts to validate its disturbance-

rejection capability and adaptive tracking performance. Overall, 

this simulation environment provides a rigorous and 

physiologically meaningful testbed that reflects real neural 

variability and noise characteristics. It ensures that the observed 

results are reproducible, clinically relevant, and representative 

of the challenges faced in real-time neuromodulation systems 

[45-49]. 

Figure 2: Overall Simulink Implementation of the  

Adaptive Neuromodulation System [45-49]  

Figure 2 Shows the interconnected subsystems: Reference 

Normal NMM (blue), Adaptive Controller (cyan), Single NMM 

Plant (orange), with parameter and monitoring blocks. 

- Reference Normal NMM: Generates the desired 

healthy trajectory 𝑦𝑚 , 𝑦̇𝑚 , 𝑦̈𝑚. 

- Adaptive Controller:  It includes a Stateflow chart for 

managing operational modes (e.g., normal, adaptive, seizure 

suppression). 

Single NMM Plant: Implements the full Jansen-Rit equations, 

receiving control input 𝑢(𝑡) and producing the actual neural 

output 𝑦(𝑡). The controller successfully forced the 

pathological NMM output to track the healthy reference signal 

across all scenarios. 

Figure 3: System Response in Scenario S2 (Parameter Drift). 

Figure 3 shows the reference signal (black) and plant output 

(orange). The output closely follows the reference despite 

underlying parameter changes, with only brief, well-damped 

transients at step changes.  

Figure 4 show the tracking error 𝑒(𝑡) , which remained small 

and converged rapidly to near zero after disturbances. Error 

spikes occur during disturbance onset but are quickly 

suppressed by the controller's robust term. The adaptive law 

successfully tracked the true, time-varying excitatory synaptic 

gain 𝐴(𝑡). 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Tracking Error in Scenario S4  

 

 

 

Figure 5: Parameter Adaptation in Scenario S2 
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Figure 5 Compares the true gain 𝐴(𝑡) (blue) and its 

estimate 𝐴̂(𝑡) (red). The estimate converges accurately to the 

true value after each step change. 

The control input 𝑢(𝑡) was bounded and smooth (due to the 

saturation function). A critical finding was the 45% reduction in 

control energy (integral of 𝑢2(𝑡)) compared to an optimally 

tuned PID controller under the same disturbance conditions, 

highlighting the efficiency of the adaptive approach. 

    
Figure 6: Response Comparison. 

 

Figure 6 shows the corresponding system output y(t) (blue) 

relative to the reference trajectory yd(t)(black). Each change in 

the excitatory gain A(t) produces a characteristic overshoot or 

undershoot in the neural response before the controller drives the 

output back to the desired value. Despite repeated and rapid 

parameter jumps, the controlled output remains stable, well-

bounded, and closely aligned with the reference after each short 

transient period.  
This demonstrates that the adaptive law not only estimates 

parameters correctly but also preserves closed-loop tracking 

performance while adaptation is occurring. Figure 7 presents the 

control input u(t) generated by the adaptive controller. Sharp 

corrective peaks appear at each reference transition, representing 

the controller’s rapid response to compensate for sudden 

changes in the desired neural activity.  

These peaks are expected in robust-adaptive schemes and 

indicate strong correction actions used to suppress tracking 

error. 

After each transition, the control signal smoothly settles to a 

stable value with no sustained oscillations or chattering, 

demonstrating well-damped behavior and confirming that the 

adaptive law maintains numerical stability. The bounded 

amplitude of u(t) across all operating conditions shows that the 

controller achieves: 

fast transient response, efficient corrective effort, and robust 

operation without instability or excessive energy consumption. 

 

 

 

 

              Figure 7 Control Signal  

 The simulation results presented throughout this chapter 

demonstrate the effectiveness, robustness, and stability of the 

proposed adaptive neuromodulation controller across a wide 

range of operating scenarios. The controller consistently 

achieved accurate reference tracking, stable parameter 

adaptation, and well-regulated control input behavior, even 

under highly nonlinear and abrupt neural dynamics. The 

parameter adaptation results showed that the estimated 

excitatory synaptic gain A^(t) consistently converged to the 

true parameter A(t). Abrupt changes in cortical excitability 

were tracked with only minor adaptive delay, indicating fast 

learning and correct implementation of the adaptive law. The 

estimator remained stable even under noisy and highly 

nonlinear neural activity. Finally, the control input analysis 

revealed that the controller produced sharp but expected 

corrective peaks at reference transitions, followed by stable 

settling phases with no chattering or high-frequency 

instability. The control effort remained bounded in all cases, 

ensuring both numerical stability and efficient use of 

stimulation energy. 

Conclusions 

      This work successfully developed and validated a novel 
adaptive control framework for the Single Neural Mass 
Model. The controller guarantees global stability, 
demonstrates superior tracking and robustness compared to 
fixed-gain methods, and achieves significant gains in energy 
efficiency. It provides a mathematically rigorous 
bridge between control theory and computational 
neuroscience, forming a solid foundation for model-based 
design of next-generation adaptive closed-loop 
neuromodulation systems for epilepsy, Parkinson's disease, 
and related neurological disorders. 
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