Computational Studies of the Active Metabolite of Triflusal Molecular Orbitals and Spectroscopic Features; The Basis for Triflusal Phototoxicity Mechanism

Authors

  • Klefah A. K Musa Department of Medicinal Chemistry, Pharmacy College, El-Mergib University, Al-Khoms, Libya
  • Lutfi M Bakar Department of Life Sciences. School of Basic Sciences. Libyan Academy for Postgraduate Studies

Keywords:

Triflusal, Phototoxicity, Photobinding, DFT, TD-DFT

Abstract

Triflusal is a prodrug used as a platelet antiaggregant agent (a platelet aggregation inhibitor). It has efficacy similar to that of aspirin specially in patients with cerebral and myocardial infraction. Chemically, triflusal is nothing except a derivative of acetylsalicylic acid (2-acetyl-3-trifluoromethylsalicylic acid). It is bio-transformed under the effect of a deacetylation process into the active metabolite (known as HTB) which is 2-hydroxyl-3-trifluoromethylbenzoic acid. During the triflusal uses the cutaneous phototoxic/photoallergic side effect is noted including rash, itching or allergic reactions. In order to study this side effect, we use a very excellent tool to study such reactions which is DFT and TD-DFT. The active metabolite of triflusal HTB molecular orbitals and UV-VIS spectroscopic features have been investigated herein. The obtained results show that there is a difference in the molecular orbitals (MOs) pattern between the two forms of HTB (protonated and deprotonated) especially the HOMOs of the deprotonated species. The HOMOs of this species localized on the carboxylic moieties, which is manifested in the Mulliken atomic charge distributions on the carboxylic moiety, where in the deprotonated species shows higher negative charge on carboxylic moieties compared with the neutral form. This is also reflexed in the results obtained for the UV-VIS spectrum of the neutral and deprotonated forms of HTB. The MOs and UV-VIS spectrum of the neutral and deprotonated species of HTB molecule and its excitations to the triplet state are investigated in more details in the present work.

References

- Murdoch D, Plosker GL."Triflusal: a review of its use in cerebral infarction and myocardial infarction, and as thromboprophylaxis in atrial fibrillation". Drugs. (2006), 66, 671–92.

- https://pubchem.ncbi.nlm.nih.gov/compound/9458.

- Antonijoan, R.M., Gich, I., Azaro, A. et al. Gastrointestinal safety of triflusal solution in healthy volunteers: a proof of concept endoscopic study. Eur J Clin Pharmacol. (2011), 67, 663–669 https://doi.org/10.1007/s00228-011-1004-9.

- Cruz-Fernández JM, López-Bescos L, García-Dorado D, López García-Aranda V, Cabadés A, Martín-Jadraque L. et al. Randomized comparative trial of Triflusal and aspirin following acute myocardial infarction. Eur Heart J. (2000), 21, 457–465.

- Culebras A, Rotta-Escalante R, Vila J, Domínguez R, Abiusi G, Famulari A, et al. Triflusal vs aspirin for prevention of cerebral infarction. Neurology. (2004), 62, 1073–1080.

- Aramendi JI, Mestres CA, Martínez-León J, Campos V, Muñoz G, Navas C. Triflusal versus oral anticoagulation for primary prevention of thromboembolism after bioprosthetic valve replacement (trac): prospective, randomized, co-operative trial. Eur. J. Cardio. Thorac. Surg., (2005), 27, 854–860.

- https://synapse.patsnap.com/article/what-are-the-side-effects-of-triflusal

- García‐Rodiño S, Espasandín‐Arias M, Vázquez‐Osorio I, Rodríguez‐Granados MT. Photosensitivity associated with systemic triflusal therapy. Photodermatology, Photoimmunology & Photomedicine. 2016 Mar 1;32(2).

- Bosca F, Cuquerella MC, Marin ML, Miranda MA. Photochemistry of 2‐Hydroxy‐4‐trifluoromethylbenzoic Acid, Major Metabolite of the Photosensitizing Platelet Antiaggregant Drug Triflusal. Photochemistry and Photobiology. 2001 May;73(5):463-8.

- Molins-Molina O, Pérez-Ruiz R, Lence E, González-Bello C, Miranda MA, Jiménez MC. Photobinding of triflusal to human serum albumin investigated by fluorescence, proteomic analysis, and computational studies. Frontiers in Pharmacology. 2019 Sep 20;10:1028.

- Rehan Zaheer M, Gupta A, Iqbal J, Zia Q, Ahmad A, Owais M, Hashlamon A, Hamidah Mohd Setapar S, Md Ashraf G, Aliev G. Molecular mechanisms of drug photodegradation and photosensitization. Current pharmaceutical design. 2016 Feb 1;22(7):768-82.

- Andreu I, Mayorga C, Miranda MA. Generation of reactive intermediates in photoallergic dermatitis. Current opinion in allergy and clinical immunology. 2010 Aug 1;10(4):303-8.

- Rao R, Shenoi SD. CONTACT POINTS. Skin.;2:4.

- Lee CT, Yang WT, Parr RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Physical Review B 1988, 37, (2):785-789.

Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. AB-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. Journal of Physical Chemistry 1994, 98, (45):11623-11627.

Becke AD, Density-functional thermochemistry .3. the role of exact exchange. Journal of Chemical Physics 1993, 98, (7):5648-5652.

MJT Frisch, G. W. S., H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. , Gaussian 03, rev. B.02; Gaussian, Inc.: Wallingford, CT, . 2004.

Musa KAK, Eriksson LA., Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct. Physical Chemistry Chemical Physics 2009, 11, (22):4601-4610.

Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters 1996, 256, (4-5):454-464.

Casida ME, Jamorski C, Casida KC, Salahub DR. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. Journal of Chemical Physics 1998, 108, (11):4439-4449.

Stratmann RE, Scuseria GE, Frisch MJ. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. Journal of Chemical Physics 1998, 109, (19):8218-8224.

Gould JW, Mercurio MG, Elmets CA. Cutaneous photosensitivity diseases induced by exogenous agents. Journal of the American Academy of Dermatology, 1995, 33(4), pp.551-573.

Musa KAK. Computational Study of Photodegradation Mechanism of Alminoprofen, The Basis for Designing New NSAIDs. Academic Journal of Science and Technology, 2024, 3(1), 171–180. https://ajost.journals.ly/ojs/index.php/1/article/view/65

Musa KAK, Eriksson LA. Theoretical study of the phototoxicity of naproxen and the active form of nabumetone. The Journal of Physical Chemistry A. 2008, 112, (43):10921-10930. DOI: 10.1021/jp805614y.

- Musa KAK, Eriksson LA. Photodegradation mechanism of nonsteroidal anti inflammatory drugs containing thiophene moieties: Suprofen and tiaprofenic acid. The Journal of Physical Chemistry B. 2009, 113, (32):11306-11313. DOI: 10.1021/jp904171p.

Musa KAK, Eriksson LA. Computational Studies of the Photodegradation Mechanism of the Highly Phototoxic Agent Benoxaprofen. ACS Omega. 2022, 7, (33):29475-29482. DOI: 10.1021/acsomega.2c03118.

Musa KAK, Matxain JM, Eriksson LA. Mechanism of photoinduced decomposition of ketoprofen. Journal of Medicinal Chemistry, 2007, 50(8), 1735-1743. doi: 10.1021/jm060697k.

Perez-Ruiz R, Molins-Molina O, Lence E, González-Bello C, Miranda MA, Jiménez MC. Photogeneration of quinone methides as latent electrophiles for lysine targeting. The Journal of Organic Chemistry, 2018, 83(21), 13019-13029.

Downloads

Published

2024-10-23

How to Cite

Musa, K. A. K., & Bakar, L. M. (2024). Computational Studies of the Active Metabolite of Triflusal Molecular Orbitals and Spectroscopic Features; The Basis for Triflusal Phototoxicity Mechanism. Academic Journal of Science and Technology, 4(1), 181–188. Retrieved from https://ajost.journals.ly/ojs/index.php/1/article/view/70