Global Adaptive Stabilization of Neural Mass Models via Constructive Lyapunov Design

محتوى المقالة الرئيسي

Salah Sawan
Rayan ben Ayad

الملخص

This paper presents the design, implementation, and simulation of a Lyapunov-based adaptive closed-loop control system for stabilizing nonlinear brain dynamics represented by a Single Neural Mass Model (NMM). The model describes the collective electrical behavior of interconnected neuronal populations and is used to mimic pathological conditions such as epileptic oscillations and Parkinsonian tremor. The proposed controller dynamically estimates and adjusts uncertain parameters in real time using a Lyapunov-guided adaptive law, ensuring stable tracking of a healthy neural rhythm despite parameter drift and external disturbances. The control framework combines Model Reference Adaptive Control (MRAC) with Sliding-Mode robustness, implemented and validated in MATLAB/Simulink with Stateflow for logic-based switching and adaptive rule management. Simulation results across multiple test scenarios demonstrate that the adaptive controller achieves fast convergence, minimal steady-state error, and strong disturbance rejection. Compared to traditional fixed-gain schemes, the proposed design reduces control energy by approximately 45% while maintaining global Lyapunov stability. Overall, this framework provides a mathematically rigorous and biologically interpretable foundation for the next generation of closed-loop neuromodulation systems, offering potential for real-time stabilization of pathological neural activity in disorders such as epilepsy and Parkinson’s disease.

تفاصيل المقالة

كيفية الاقتباس
Sawan, S., & ben Ayad, R. (2025). Global Adaptive Stabilization of Neural Mass Models via Constructive Lyapunov Design. المجلة الأكاديمية للعلوم و التقنية, 6(1), 306–313. استرجع في من https://ajost.journals.ly/ojs/index.php/1/article/view/134
القسم
Biomedical sciences

المراجع

Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273 -1302.

Moran, R. J., Stephan, K. E., Seidenbecher, T., Pape, H. C., Dolan, R. J., & Friston, K. J. (2013). A neural mass model of dynamic gain control. Frontiers in Computational Neuroscience, 7, 1–14.

Sanz-Leon, P., Knock, S. A., Spiegler, A., & Jirsa, V. K. (2015). The Virtual Brain: A simulator of primate brain network dynamics. Frontiers in Neuroinformatics, 9, 10.

Abougarair, A. 2020. Neural Networks Identification and Control of Mobile Robot Using Adaptive Neuro Fuzzy Inference System, ICEMIS'20: Proceedings of the 6th International Conference on Engineering & MIS 2020, https://doi.org/10.1145/3410352.3410734.

Ioannou, P. A., & Sun, J. (2012). Robust Adaptive Control. Dover Publications.

Edardar, M. et al. 2021. Tracking Control with Hysteresis Compensation Using Neural Networks, (MI-STA2021), Libya. DOI: 10.1109/MI- STA52233.2021.9464365

Narendra, K. S., & Annaswamy, A. M. (1989). Stable Adaptive Systems. Prentice-Hall.

Khalil, H. K. (2015). Nonlinear Control. Pearson Education.

Chen, M., Ge, S. S., & Sun, C. (2017). Adaptive neural control for a class of stochastic nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 28(12), 1–13.

Slotine, J. E., & Li, W. (1991). Applied Nonlinear Control. Prentice-Hall.

Elwefati,S. et al. (2023). Identification and Control of Epidemic Disease Based Neural Networks and Optimization Technique, International Journal of Robotics and Control Systems 3 (4),pp780-803. DOI: 10.31763/ijrcs.v3i4.1151

Abougarair, A. (2019). Model Reference Adaptive Control and Fuzzy Optimal Controller for Mobile Robot, Journal of Multidisciplinary Engineering

Science and Technology, vol. 6, issue 3, pp 9722- 9728.

Alemi, A., et al. (2025). Lyapunov theory demonstrating a fundamental limit on the brain’s learning rate. Physical Review Research, 7(2), 023174.

Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics.

Wendling, F., et al. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic inhibition. European Journal of Neuroscience.

Aburakhis, M. et al. (2022). Performance of Anti-Lock Braking Systems Based on Adaptive and Intelligent Control Methodologies, Indonesian Journal of Electrical Engineering and Informatics (IJEE). DOI: 10.52549/ijeei. v10i3.3794

Ioannou, P. A., & Sun, J. (2012). Robust Adaptive Control. Dover Publications.

Slotine, J. J. E., & Li, W. (1991). Applied Nonlinear Control. Prentice-Hall.

Abougarair, A. (2023). Adaptive Neural Networks Based Optimal Control for Nonlinear System, 2023 IEEE (MI-STA2023), Libya. DOI: 10.1109/MI-STA57575.2023.10169340.

Narendra, K. S., & Annaswamy, A. M. (1989). Stable Adaptive Systems. Prentice-Hall

Little, S., & Brown, P. (2020). Adaptive deep brain stimulation in advanced Parkinson's disease. Annals of Neurology.

Aburakhis, M. et al. (2022). Adaptive Neural Networks Based Robust Output Feedback Controllers for Nonlinear Systems, International Journal of Robotics and Control Systems, Vol. 2, No. 1, pp. 37-56, ISSN: 2775-2658, http://pubs2.ascee.org/index.php/ijrcs.

Edardar, M., et al. (2021). Lyapunov Redesign of Piezo Actuator for Positioning Control, 9th International Conference on Systems and Control.

November 24-26, 2021, ENSICAEN, Caen, France. DOI: 10.1109/ICSC50472.2021.9666594

Abougarair, A. (2018). Virtual Reality Animation of ANFIS Controller for Mobile Robot Stabilization, Journal of Engineering Research, no. 25, issue 25. https://jer.ly/PDF/Vol-25-2018/JER-08-25.pdfcontent/uploads/JMESTN42352870.pdf

Gnan, H. and et. al. (2022). Real Time Classification for Robotic Arm Control Based Electromyographic Signal, (MI-STA2022), Sabrata, Libya. DOI: 10.1109/MI-STA54861.2022.9837703

Bakouri, M., et al. (2024). Optimizing cancer treatment using optimal control theory, AIMS Mathematics, vol. 9, issue 11, pp. 31740-31769. doi: 10.3934/math.20241526

Gnan, H., et al. (2021). Implementation of a Brain-Computer Interface for Robotic Arm Control, (MI-STA2021), Tripoli, Libya. DOI: 10.1109/MI- STA52233.2021.9464359

Ellafi, M. et al. (2023). Analysis of Mobile Accelerometer Sensor Movement Using Machine Learning Algorithms, (MI-STA2023). DOI: 10.1109/MI-STA57575.2023.10169214

Abougarair, A. (2022). Position and Orientation Control of a Mobile Robot Using Intelligent Algorithms Based Hybrid Control Strategies, Journal of Engineering Research (Libya), issue 34, pp 67-86. https://jer.ly/PDF/Vol-34-2022/JER-05-34-Abstract. php?f=a

Oun, O. et al. (2024) Cancer Treatment Precision Strategies Through Optimal Control Theory, Journal of Robotics and Control (JRC), Vol. 5, Issue 5, pp. 1261-1290. DOI: https://doi.org/10.18196/jrc.v5i5.22378

Arebi, W. et al. (2022). Smart Glove for Sign Language Translation International Robotics & Automation Journal, vol. 8, issue 3. DOI: 10.15406/iratj.2022.08.00253

Alqahtani, A. et al., (2024). Optimizing cancer treatment using optimal control theory, AIMS Mathematics, 2024, vol. 9, Issue 11: 31740-31769. DOI: 10.3934/math.20241526.

Sawan, S., et al. (2024). Deep Learning-Based Automated Approach for Classifying Bacterial Images, International Journal of Robotics and Control Systems, vol.4, no. 2. DOI: 10.31763/ijrcs.v4i2.1423

Can, O., et al. (2024). Blood Cells Cancer Detection Based on Deep Learning, Journal of Advances in Artificial Intelligence, vol 2, number 1, DOI: 10.18178/JAAI.2024.2.1.108-121.

Tabit, T., et al. (2024). Breast Cancer Histopathology Images Detection, International Conference on Artificial Intelligence and its Applications in the Age of Digital Transformation, Springer conference, pp 71–86, DOI: 10.1007/978-3-031-71429-0_6

Abougarair, A., (2022). Optimal Control Synthesis of Epidemic Model, IJEIT International Journal on Engineering and Information Technology, vol.8, no. 2, Misrata, June 2022, Special Issue for the International Engineering Conference IEC2022 MU.

Buzkhar, I. and et al. (2023). Modeling and Control of a Two-Wheeled Robot Machine with a Handling Mechanism, (MI-STA2023), Libya. DOI. 10.1109/MI-STA57575.2023.10169424.

Abougarair, A. and et. al. (2023). Design and Implementation of Hydric Controller for Two Wheeled Robot, IJEIT on Engineering and Information Technology, vol.11, no. 1.DOI: https://doi.org/10.36602/ijeit.v11i1.5

Attawil, I. and et. al. (2024). Enhancing Lateral Control of Autonomous Vehicles through Adaptive Model Predictive Control, 2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Tripoli, Libya. DOI: 10.1109/MI-STA61267.2024.10599733

Elmolihi, A., et al. (2020). Robust Control and Optimized Parallel Control Double Loop Design for Mobile Robot, IAES International Journal of Robotics and Automation (IJRA), vol. 9, no. 3. DOI: http://doi.org/10.11591/ijra.v9i3

Ma’arif, A. et al. (2024). Model Predictive Control for Optimizes Battery Charging Process, 2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering. DOI: 10.1109/MI-STA61267.2024.10599662.

Abougarair, A. (2022). Position and Orientation Control of an Mobile Robot Using Intelligent Algorithms Based Hybrid Control Strategies, Journal of Engineering Research (Libya), issue 34, pp 67-86. https://jer.ly/PDF/Vol-34-2022/JER-05-34-Abstract.php?f=a

Shashoa, N. et al., (2024) , The Effectiveness Comparison between Multi-Stage RLS Algorithm for (CARMA) and the Multi-Stage RLS Algorithm for (CARAR) Systems, 6th International Conference on Electrical Engineering and Control Applications (ICEECA’24) , 19 -11november, Algeria.

Abolaeha, O. Et. al. (2025), Classification of Malignant and Benign Skin Lesions Using CNN Models, IJEIT on Engineering and Information Technology, vol.14, no. 1, pp. 60-72, DECEMBER 2025. https://doi.org/10.36602/ijeit.v14i1.572.

Zrigan, A., et al. (2025), Integration of MPC and SOLADRC to Optimize PWR Performance, Journal of Pure and Applied Sciences (JOPAS), vol.04, no. 1, DOI: 10.51984/SUCP.V4I1.3870.

Aboud, M. et. al. (2023). Robust H-Infinity Controller Synthesis Approach for Uncertainties System, 11th International Conference on Systems and Control (ICSC'2023), December 18-20, 2023, Sousse, Tunisia. DOI: 10.1109/ICSC58660.2023.10449693

Shashoa, N. et. al. (2021). Ahmed J. Abougarair Fault Detection Based on Validated Model of Data Filtering

Based Recursive Least Squares Algorithm for Box-Jenkins Systems, 2021 Global Congress on Electrical Engineering (GC-ElecEng 2021), Valencia, Spain. DOI: 10.1109/GC-ElecEng52322.2021.9788358