Synthesis and Characterization of Cobalt and Copper Nanoparticles by Amino Acid

محتوى المقالة الرئيسي

Abdussallam N. Eldewik
Huda. M. Al-Ashkham

الملخص

A quantitative study of the synthesis and characterization of copper oxide, cobalt oxide nanoparticles and their mixtures has been considered. With special emphasis on the hydrothermal synthesis in organic media of glutamic acid.


The aim of the work is to initiate a new line of research on the synthesis and characterization of these particles and is to develop high-quality nanoparticles for use in more important applications. It has been characterized using several techniques such as Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray EDX, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), and Diffuse reflectance UV-Vis analysis.


The results of these devices indicated the formation of copper oxide nanoparticles with highly purified crystalline nanostructures, as well as very minimal incorporation of cobalt into the formulation. Thermal gravimetric analysis (TGA) confirmed their thermal stability, while ultraviolet radiation (UV-Vis) showed that some samples are insulators and others are semiconductors.

تفاصيل المقالة

كيفية الاقتباس
Eldewik, A. N., & Al-Ashkham, H. M. (2024). Synthesis and Characterization of Cobalt and Copper Nanoparticles by Amino Acid. المجلة الأكاديمية للعلوم و التقنية, 4(1), 205–213. https://doi.org/10.64095/ajst.v4i1.74
القسم
Articles

المراجع

Abdullahi, S. S., Güner, S., Musa, Y. K. I. M., Adamu, B. I., & Abdulhamid, M. I. (2016). Sımple method for the determınatıon of band gap of a nanopowdered sample usıng Kubelka Munk theory. NAMP J, 35, 241-246.‏

Ahmed, A., Gajbhiye, N. S., & Joshi, A. G. (2011). Low cost, surfactant-less, one pot synthesis of Cu2O nano-octahedra at room temperature. Journal of Solid State Chemistry, 184(8), 2209-2214.‏ DOI: https://doi.org/10.1016/j.jssc.2011.05.058

Arora, N., Thangavelu, K., & Karanikolos, G. N. (2020). Bimetallic nanoparticles for antimicrobial applications. Frontiers in Chemistry, 8, 412.‏ DOI: https://doi.org/10.3389/fchem.2020.00412

Birhi, D. N., Iftitah, E. D., & Warsito, W. (2023). Use of CoO/ZnAl2O4 Catalysts and Microwaved Assisted in Vanillin Synthesis. Jurnal Kimia Valensi, 9(1), 76-88.‏ DOI: https://doi.org/10.15408/jkv.v9i1.29727

Dharma, J., Pisal, A., & Shelton, C. T. (2009). Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer. Application Note Shelton, CT: PerkinElmer, 1-4.‏

Eugénio, S., Demirci, U. B., Silva, T. M., Carmezim, M. J., & Montemor, M. F. (2016). Copper-cobalt foams as active and stable catalysts for hydrogen release by hydrolysis of sodium borohydride. international journal of hydrogen energy, 41(20), 8438-8448.‏ DOI: https://doi.org/10.1016/j.ijhydene.2016.03.122

Fishman, Z. S., Rudshteyn, B., He, Y., Liu, B., Chaudhuri, S., Askerka, M., ... & Pfefferle, L. D. (2016). Fundamental role of oxygen stoichiometry in controlling the band gap and reactivity of cupric oxide nanosheets. Journal of the American Chemical Society, 138(34), 10978-10985. DOI: https://doi.org/10.1021/jacs.6b05332

Gaisford, S., Kett, V., & Haines, P. (Eds.). (2016). Principles of thermal analysis and calorimetry. The Royal Society of Chemistry.‏ DOI: https://doi.org/10.1039/9781788017275

Gao, L., Pang, C., He, D., Shen, L., Gupta, A., & Bao, N. (2015). Synthesis of hierarchical nanoporous microstructures via the Kirkendall effect in chemical reduction process. Scientific reports, 5(1), 16061.‏ DOI: https://doi.org/10.1038/srep16061

Gupta, D., Meher, S. R., Illyaskutty, N., & Alex, Z. C. (2018). Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties. Journal of Alloys and Compounds, 743, 737-745. DOI: https://doi.org/10.1016/j.jallcom.2018.01.181

Idris, D. S., & Roy, A. (2023). Synthesis of bimetallic nanoparticles and applications—an updated review. Crystals, 13(4), 637.‏ DOI: https://doi.org/10.3390/cryst13040637

Kooti, M., & Matouri, L. (2010). Fabrication of nanosized cuprous oxide using fehling's solution. Scientia Iranica, 17(1).‏

Laidoudi, S., Bioud, A. Y., Azizi, A., Schmerber, G., Bartringer, J., Barre, S., & Dinia, A. (2013). Growth and characterization of electrodeposited Cu2O thin films. Semiconductor science and technology, 28(11), 115005.‏ DOI: https://doi.org/10.1088/0268-1242/28/11/115005

Le, G. N. T., Cong, T. N., Van, T. P., Tuyet, M. N. T., Thi, L. N., Dang, C. H., ... & Lan, A. L. T. (2021). Green synthesis of cuprous oxide (Cu2O) nano particles using aloe vera plant. Vietnam Journal of Catalysis and Adsorption, 10(2), 54-58.‏ DOI: https://doi.org/10.51316/jca.2021.028

Leslie, S. A., & Mitchell, J. C. (2007). Removing gold coating from SEM samples. palaeontology, 50(6), 1459-1461. DOI: https://doi.org/10.1111/j.1475-4983.2007.00718.x

Liu, Z., He, Y., & Ma, X. (2023). Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review. Current Drug Delivery.‏ DOI: https://doi.org/10.2174/1567201820666230102140450

Ma, L. L., Li, J. L., Sun, H. Z., Qiu, M. Q., Wang, J. B., Chen, J. Y., & Yu, Y. (2010). Self-assembled Cu2O flowerlike architecture: polyol synthesis, photocatalytic activity and stability under simulated solar light. Materials Research Bulletin, 45(8), 961-968.‏‏ DOI: https://doi.org/10.1016/j.materresbull.2010.04.009

Mahajan, M. B., Pavan, M. S., & Joy, P. A. (2009). Ferromagnetic properties of glucose coated Cu2O nanoparticles. Solid state communications, 149(47-48), 2199-2201.‏ DOI: https://doi.org/10.1016/j.ssc.2009.09.013

Markova-Deneva, I. (2010). Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method. Journal of the University of Chemical Technology and Metallurgy, 45(4), 351-378.‏

Muthukumaran, M., Niranjani, S., Barnabas, K. S., Narayanan, V., Raju, T., & Venkatachalam, K. (2019). Green route synthesis and characterization of cuprous oxide (Cu2O): Visible light irradiation photocatalytic activity of MB dye. Materials Today: Proceedings, 14, 563-568.‏ DOI: https://doi.org/10.1016/j.matpr.2019.04.179

Saw, C. K. (2005). X-Ray Scattering Techniques for Characterization of Nanosystems in Lifescience. Nanotechnologies for Life Sciences, 3(UCRL-JRNL-211387).‏

Subramanian, N. D., Balaji, G., Kumar, C. S., & Spivey, J. J. (2009). Development of cobalt–copper nanoparticles as catalysts for higher alcohol synthesis from syngas. Catalysis Today, 147(2), 100-106. DOI: https://doi.org/10.1016/j.cattod.2009.02.027

Tavakoli, A., Sohrabi, M., & Kargari, A. (2007). A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. chemical papers, 61(3), 151-170.‏ DOI: https://doi.org/10.2478/s11696-007-0014-7

Theivasanthi, T., & Alagar, M. (2010). X-ray diffraction studies of copper nanopowder. arXiv preprint arXiv:1003.6068.‏

Weiss, I. M., Muth, C., Drumm, R., & Kirchner, H. O. (2018). Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC biophysics, 11(1), 1-15.‏ DOI: https://doi.org/10.1186/s13628-018-0042-4

Yuanchun, Q., Yanbao, Z., & Zhishen, W. (2008). Preparation of cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterization. Materials Chemistry and Physics, 110(2-3), 457-462.‏ DOI: https://doi.org/10.1016/j.matchemphys.2008.03.001

Zhu, H., Du, M., Yu, D., Wang, Y., Wang, L., Zou, M., ... & Fu, Y. (2013). A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu 2 O–Au hierarchical heterostructures with a series of morphological evolutions. Journal of Materials Chemistry A, 1(3), 919-929. DOI: https://doi.org/10.1039/C2TA00591C